
Biological and Water Quality Assessment of the Upper Des Plaines Watershed

Des Plaines River Watershed Workgroup August 17, 2017

> Chris O. Yoder Midwest Biodiversity Institute Columbus, OH

MBI is a 501[c][3] Applied Research Organization Specializing in Aquatic Bioassessments, Research, Education, & Training

Midwest Biodiversity Institute Center for Applied Bioassessment & Biocriteria P.O. Box 21561 Columbus, OH 43221-0561

A Framework and Implementation Plan for Tiered Aquatic Life Uses: Illinois Rivers and Streams

IAWA sponsored an effort to add tiered aquatic life uses and biocriteria to the Illinois WQS (2010-present)

> Midwest Biodiversity Institute Center for Applied Bioassessment & Biocriteria P.O. Box 21561 Columbus, OH 43221-0561 Chris O. Yoder, Principal Investigator <u>mbi@mwbinst.com</u>

Assessment Plan for the DuPage and Salt Creek Watersheds

ne Development of a Biologi

A similar approach was followed for the Upper Desplaines & for the Lower Des Plaines in 2018

> Chris O. Yoder Center for Applied Bioassessment and Biocriteria Midwest Biodiversity Institute Columbus, OH

What is a Bioassessment?

- Bioassessment a systematic assessment of the aquatic resource using biological indicators AND chemical/physical Bioassessment is the essential implementation tool for a TALU based approach
- Reasonably available tools and criteria exist to assess and evaluate this for all waterbody types.

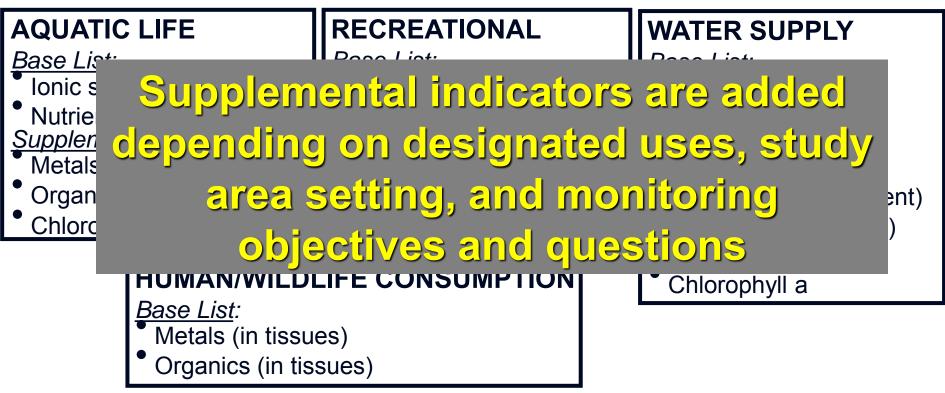
Aquatic Life Uses

ALUs inherently "drive" the determination of status & management responses, thus they are a critical determinant of overall program effectiveness. a listically be This underscores the critical importance and "reach" of aquatic life uses - they influence every aspect of water quality management.

Chemical – excess nutrients from urban runoff and CSOs

Physical – extensively modified stream habitat

Biological – nuisance algal growth


Energy cycling – short nutrient spirals

Treating these independently will not solve the problem.

Mill Creek – Cincinnati, OH

Core indicators are measured
routinely – independent of
assessment & management

For Specific Designated Uses Add the Following:

Net-based methods (including kicks, dips, jabs, sweeps, & picks)

Grab samplers

IEPA methods for field collections & lab processing

Trib. to P. 506351

STARW 35

Fish are a widely identifiable component of aquatic systems and are valued for their recreational uses. Most species, however, are more obscure, and comprise the second most endangered group.

Illinois DNR "electric seine"

MBI pulsed D.C. electrofishing methods

11115

The Qualitative Habitat Evaluation Index (QHEI)

QHEI Includes Six Major Categories of *Macrohabitat*

Substrate - types, origin, quality, embeddedness
 Instream Cover – types and quantity

Channel Quality – sinuosity, development, stability

Riparian – width, quality, bank stability & quality

Pool/Run/Riffle – depth, current types, embeddedness, morphology

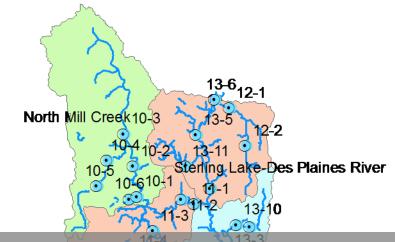
Gradient – local gradient (fall per unit distance)

Source: The Qualitative Habitat Evaluation Index (Rankin 1989)

Chemical/Physical Field Procedures

Water column grab sampling

Depth integrated sampler


Automatic composite samplers

Time-of-travel dye injection

Ohio EPA Chemical Effluent & Exposure Sampling Procedures

Whole Effluent Toxicity (WET) Testing is Performed Primarily on Effluents Permitted Discharges are Sampled for a Variety of Chemicals - This Provides Data to Determine Pollutant Loads

Biochemical Markers (Biomarkers) are Useful for Discerning Problem Pollutants Fish Tissue Analysis Reveals Bioaccumulative Pollutants and Risks to Human and Wildlife Health

Upper Des Plaines Watershed Bioassessment

 Pollution survey design – geometric allocation of sampling sites with additional sites positioned in proximity to suspected sources of

> ¹⁶⁻³ ¹⁶⁻³

- Employed 3 crews over a July-October seasonal index period.
- Followed IEPA methods to ensure data consistency & relevance of results.
- Three year rotation will initiate in 2017.

Completing the Cycle of WQ Management: Managing for Environmental Results

Indicator Levels

- 1: Management actions
- 2: Response to management
- 3: Stressor abatement
- 4: Ambient conditions
- 5: Assimilation and uptake
- 6: Biological response

Administrative Indicators [permits, plans, grants, enforcement]

Stressor Indicators [pollutant loads, land practices]

Exposure Indicators [pollutant conc., habitat, ecosystem process, fate & transport]

Response Indicators [biological assemblage indices, other attributes]

"Ecological Health" The Endpoint of Concern

SEPA Server A Control of Control

Note: The tool uses discharge monitoring report (DMR) data from ICIS-NPDES to calculate pollutant discharge amounts. EPA has verified the accuracy of the tool's calculations. EPA has also performed a limited review of the underlying data that has focused on facilities with the largest amounts of pollutant discharges. Due to the large amount of DMR data, some errors exist in ICIS-NPDES DMR data. Please see the <u>User Guides</u> page for instructions on how to use the tool and how to correct errors in ICIS-NPDES. The tool also uses wastewater pollutant discharge data fr the Toxics Release Inventory (TRI). <u>Contact Us</u> with any comments or questions about the tool, and sign up for our <u>e-mail news bulletin</u> to be notified when new data, enhancements, or training materials become available.

https://cipubsepasgov/clini/

Overview

The Discharge Monitoring Report (DMR) Pollutant Loading Tool is designed to help you determine who is discharging, what pollutants they are discharging and how much, and where they are discharging. The tool calculates pollutant loadings from permit and DMR data from EPA's Integrated Compliance Information System for the National Pollutant Discharge Elimination System (ICIS-NPDES). Data are available from the year 2007 to the present. Pollutant loadings are presented as pounds per year and as toxic-weighted pounds per year to account for variations in toxicity among pollutants. The tool ranks dischargers, industries, and watersheds based on pollutant mass and toxicity, and presents "top ten" lists to help you determine which discharges are important, which facilities and industries are producing these discharges, and which watersheds are imported.

Jump to a DMR Loading Tool Search

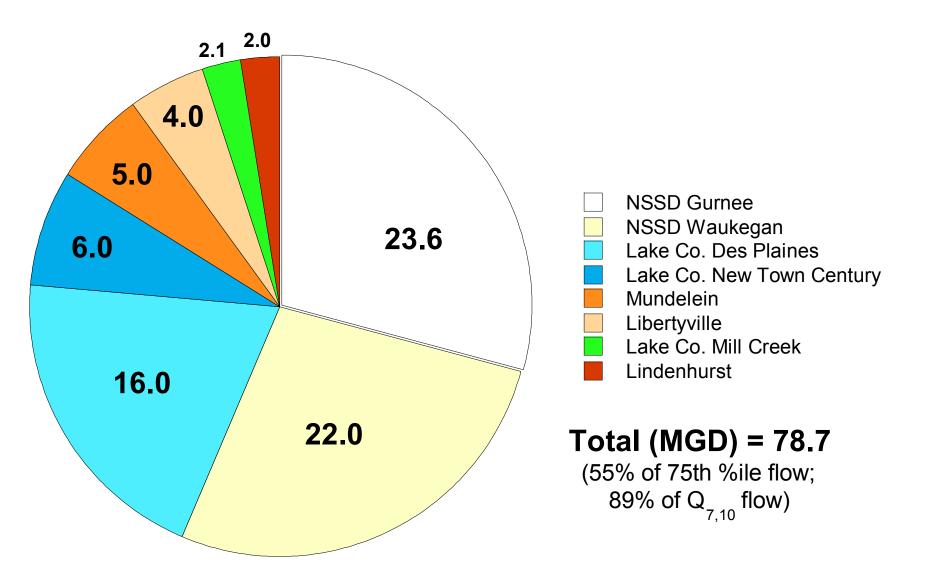
Data Explorer

Advanced Searc

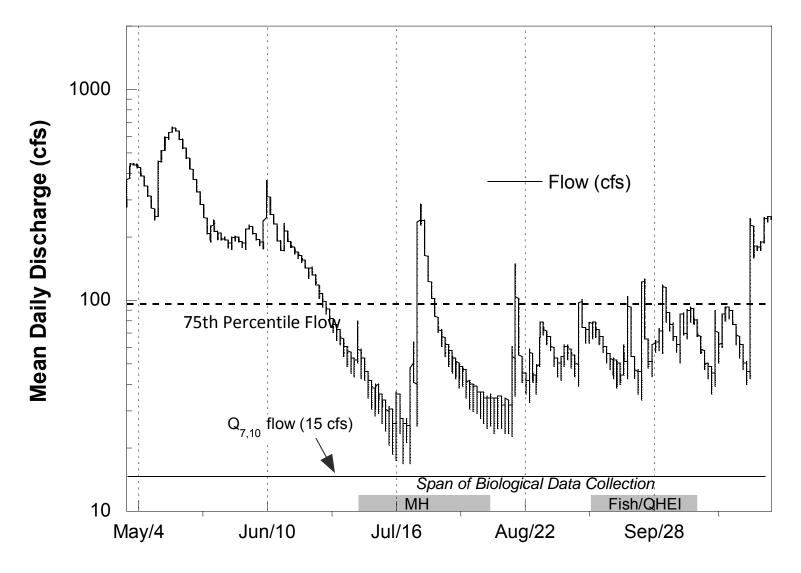
The tool also includes waste available for the years 2007 t

the largest pollutant discharges to surface waters or sewage treatment plants (a.k.a. Publicly Owned Treatment Works or "POTWs"). Users can also compare the DMR data search results against TRI data search results and vice versa. The tool clearly labels the source of data when displaying search results but does not mix TRI or DMR data when calculating pollutant discharges.

If this is your first time using the tool, you might want to start with the <u>EZ Search</u> (DMR data) or the <u>TRI Search</u> (TRI data). If you need more flexibility with your searches, try the <u>Advanced Search</u> (DMR data). If you have additional questions or would like more information about the tool, you can access more detailed information in the <u>User Guides/Tech Documents</u> tab.


Read on to learn more about:

- How to Navigate the Tool
- Data Sources, Scope, and Limitations
- Frequently Asked Questions and Answers


-		-	-		Courses in case	All and a second
		-	1.1.1.1			Barris Barris
	the second s	100.0	100	-	-92	and the second s
	and and all survey.	125	4.0	1.00 An	144	E
-			10.00	1000	144	The second second
-		and the second	10.00	-	16.0	
		-	1.2	10.00	and and a	and the second
-	a second		100	10.00	10	and the second s
	and the state of t		1.10	10.04	10.4	· · · · · · · · · · · · · · · · · · ·
-	and the second second	1.25	11.00	104	12	
_				-		TRI and DMR Compar
	Efflu	ent Li	Imit			TRI and Divit Compar
-	10000		~			Dashboard
	xceeda	nces	Sea	ircn		Dashbuaru

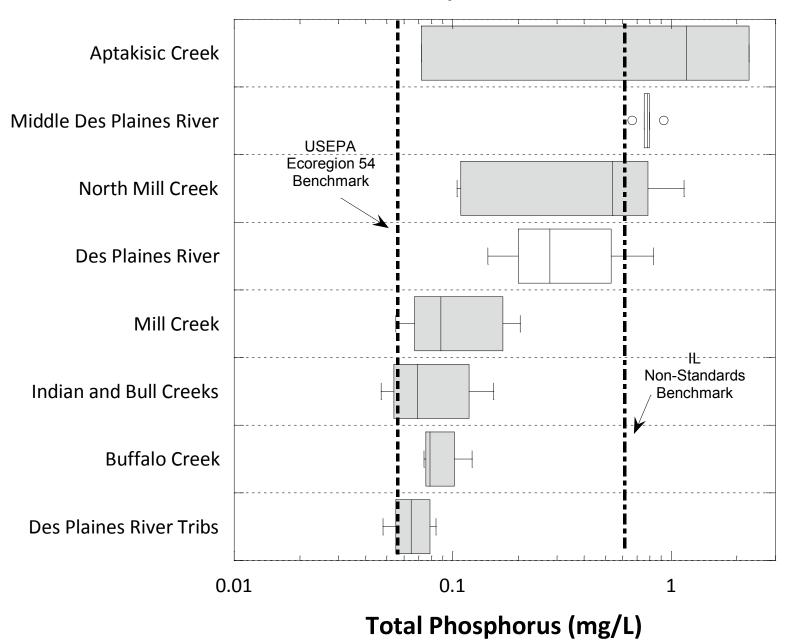
Facility	Receiving Water Body	River Mile	Latitude	Longitude	Average Flow 2016 (MGD)	Design Average Flow (MGD)	Treatment Type ¹	Nutrient Removal ²
Lake Co. DPW Mill Creek WWTP	Mill Creek/Des Plaines R.	1.0/102.0	42°25'00"N	87°55'40"W	2.1	7.8	AWT	М
North Shore SD Waukegan WWTP	Des Plaines R.	98.1	42°22'15"N	87°54'53"W	22.0	44.0	AWT	Р
North Shore SD Gurnee WWTP	Des Plaines R.	95.5	42°21'25"N	87°55'36"W	23.6	47.2	AWT	Ν
Libertyville WWTP (IL0029530)	Des Plaines R.	84.8	42°15'15"N	88°56'10"W	4.0	8.0	AWT	М
Mundelein WWTP (IL0022501)	Des Plaines R.	84.6	42°15'11"N	87°50'34"W	5.0	15.0	Secondary	М
Lake Co. DPW New Town Century WWTP (IL0071366)	Des Plaines R.	82.3	42°13'30"N	87°56'15"W	6.0	18.0	AWT	М
Lake Co. DPW Des Plaines WWTP (IL0022055)	Aptaksic Cr./ Des Plaines R.	0.8/76.4	42°09'47"N	87°55'40"W	16.0	51.8	AWT	М
Lindenhurst SD WWTP (IL0020796)	Hastings Cr.	2.8	42°26'01"N	88°01'56"W	2.0	5.7	AWT	М

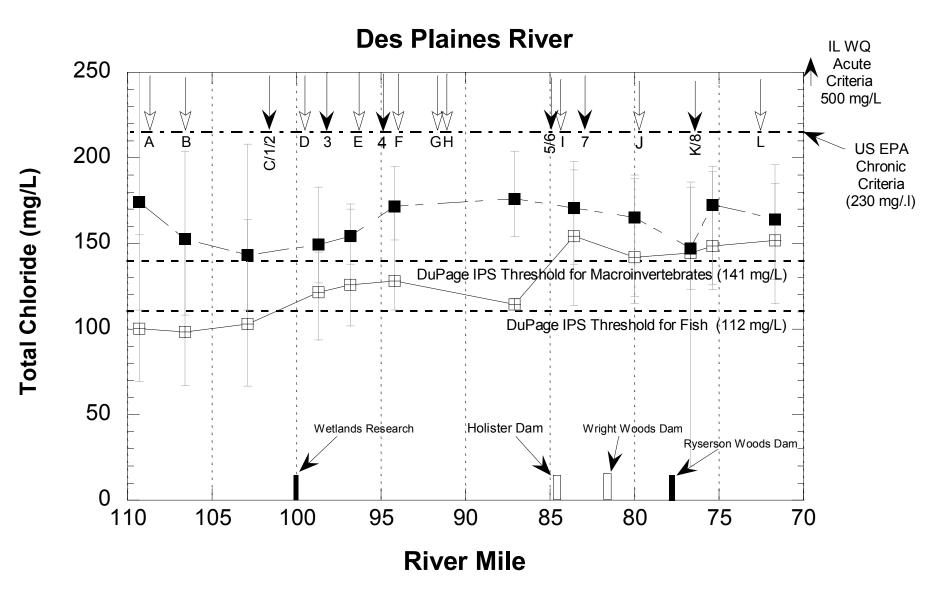
Upper Des Plaines Major WWTP Average Flows 2016 (MGD)

Des Plaines River nr. Gurnee, IL

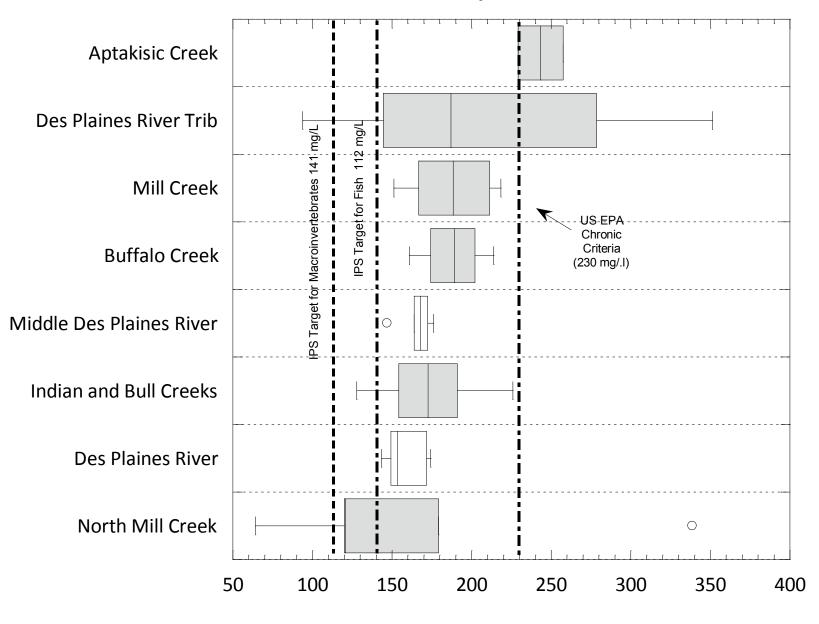
Evaluating Chemical Results: WQC & Threshold Effects

	Water Qua	lity Criteria		Effect Th	Non-effect Benchmarks					
Parameter	IL Chronic	IL Acute	Ohio EPA	SW Ohio	NOAA SQRT	Other	Regional Reference	IL Non- Standard		
			De	mand Group						
BOD₅	NA	NA		2.48 mg/L [HW Streams] 2.96 mg/L [WD Streams] 2.60 mg/L [BT Rivers]			2.00 mg/L [HW Streams]			
Dissolved Oxygen (D.O.)	5.5./6.0 mg/L [7-day rolling avg.]	3.5/5.0 mg/L [minimum]	7.2 mg/L [HW Streams]	5.32 mg/L [All Streams]			6.6 mg/L [HW Streams]			
Suspended Solids (TSS)	NA	NA	16.0 mg/L [HW Streams]	65.7 mg/L [HW Streams] 70.8 mg/L [WD Streams] 74.3 mg/L [BT Rivers]			28.0 mg/L [HW Streams]			
			Nu	trients Group)					
Ammonia-N (NH ₃ - N)	1.24 mg/L [pH 8.0/25°C]	8.40 mg/L [pH 8.0/25°C]	0.05 mg/L [HW Streams]	0.31 mg/L [HW Streams]		0.15 mg/L [DRSCW IPS]	0.025 mg/L [HW Streams]			
Total Kjeldahl Nitrogen (TKN)	NA	NA	0.50 mg/L [HW Streams]	0.51 mg/L [HW Streams] 0.58 mg/L [WD Streams] 1.05 mg/L [BT Rivers]		1.00 mg/L [DRSCW IPS ¹¹]	0.70 mg/L			

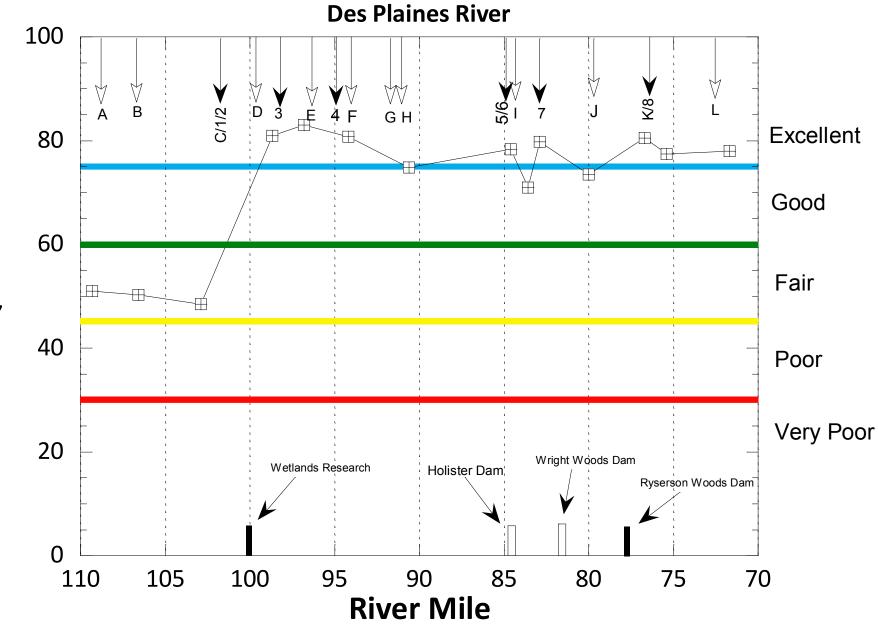

1.2 ₿ ľ ₩ GH Ŵ K/8-- <u>2</u>/9 È C/1/2 ťD 4 F 7 3 L A IJ 1.0 0.8 ⊞ ⊞ IL year2015 +Non-Standard year2016 Ħ Benchmark 0.6 F 0.4 畄 **USEPA** 0.2 Wright Woods Dam +Ecoregion 54 Ryserson Woods Dam_ Holister Dam Wetlands Research Benchmark Ħ 0 105 85 110 100 95 90 80 75 70


Total Phosphorus (mg/L)

Des Plaines River


River Mile

TP by Sub-Watershed


Chloride by Sub-Watershed

Total Chloride (mg/L)

Table 13.Concentrations of organic compounds (mg/kg) in sediments at sites in the Des Plaines River study area October 2016. Values above the MacDonald et al.(2000) PEL and TEL thresholds or the elevated and extremely elevated ranges of Short (1998) are shaded in accordance with the color-code key at the end of the table.

table																			
Site ID	Basin code	Stream Code	RM	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	Anthracene (mg/kg)	Benzo(a)anthracene (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(g,h,i)perylene (mg/kg)	Benzo(k)fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenzo(a,h)anthracene (mg/kg)	Fluoranthene (mg/kg)	Fluorene (mg/kg)	Indeno(1,2,3-cd)pyrene (mg/kg)	Naphthalene (mg/kg)	Phenanthrene (mg/kg)	Pyrene (mg/kg)
								De	es Plaines	River									
13-6	95	656	109.30	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118
13-5	95	656	106.60	95	95	95	95	95	95	95	95	95	95	95	95	95	95	95	95
13-4	95	656	102.90	169	169	169	297	292	519	267	210	402	169	869	169	202	169	380	600
13-3	95	656	98.70	79	79	156	891	926	1460	797	480	1090	141	2700	90	617	79	1300	1950
13-2	95	656	96.82	61	61	61	61	61	61	61	61	61	61	65	61	61	61	61	61
13-1	95	656	94.20	86	86	86	88	116	195	112	86	157	86	282	86	89	86	86	221
16-5	95	656	83.60	133	133	199	1730	1970	3430	1720	897	2490	302	5800	133	1360	133	1820	3960
16-4	95	656	80.00	72	72	72	273	317	573	298	194	439	72	849	72	235	72	231	648
16-3	95	656	76.7	80	80	80	142	187	364	177	104	266	80	485	80	136	80	160	367
16-2	95	656	75.40	90	90	90	279	365	692	357	223	510	90	1050	90	274	90	334	723
16-1	95	656	71.7	444	71	729	3590	2790	3960	1760	1080	3080	412	10200	529	1550	71	4880	5750
								Newp	ort Drain	age Ditch									
12-2	95	708	3.03	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
12-1	95	708	0.70	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63
								Seav	ey Draina	-									
15-3	95	390	3.66	52	52	52	221	258	414	244	150	308	52	651	52	183	52	287	478
15-8	95	390	0.45	98	98	208	2250	2710	4640	2360	1110	3320	401	6980	134	1930	98	1940	5210
			-						hptaksic C										
18-3	95	701	4.30	135	135	178	1570	2010	3650	1720	980	2590	311	6110	135	1390	135	2090	4050
18-2	95	701	0.8	84	84	84	84	84	156	102	84	120	84	178	84	84	84	84	133
18-1	95	701	0.50	88	88	88	567	549	760	373	270	603	88	1480	88	321	88	478	1070
		700							Buffalo Cı										
17-3	95	703	7.7	63	63	63	63	63	65	63	63	63	63	99	63	63	63	63	84
17-2	95	703	6.10	93	93	93	275	340	577	281	192	446	93	865	93	225	93	344	662
17-1	95	703	0.75	89	89	121	1160	1430	2540	1270	732	1790	214	3680	89	1000	89	1200	2620
17.4	05	74.2	0.00	76	70	0.2	424		lo Creek		201	700	0.0	15.00	70	102	70	C 4 2	1140
17-4	95	713	0.68	76	76	82	421	498	917	517	291	700	86	1560	76	403	76	612	1140

QHEI

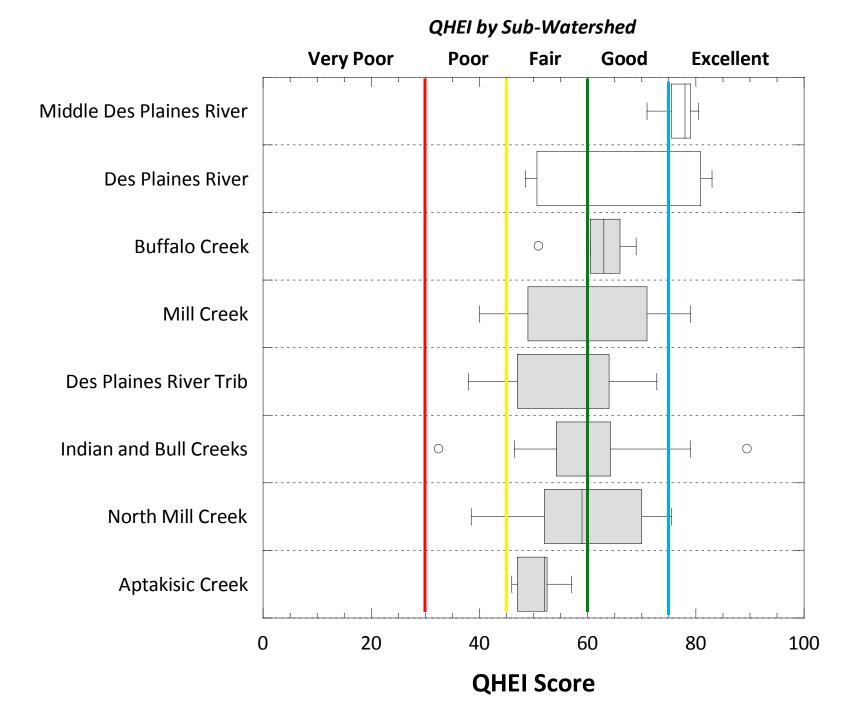


Table 11. Qualitative Habitat Evaluation Index (QHEI) matrix showing good and modified habitat attributes at each site in the Upper Branch Des Plaines River study area in 2016. (■- good habitat attribute; ● - high influence modified attribute; ● - moderate influence modified attribute).

						Goo	d Ha	bitat	Attri	bute				Hi	gh Ir	nfluen Attril			ed			Mo	odera	te Inf	luen	ce M	odifie	d At	tribu	tes			Rat	tios
Site ID	River Mile	QHEI Score	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	"Good" Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No <mark>Sinuosit</mark> y	Sparse No Cover	Max Depths <40 cm	High Influence Poor Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	≤2 Cover Types	Intermittent Flow or Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle Embeddedness	No Riffle	Poor Habitat Attributes	Ration of Poor (High) to Good	Ration of Poor (All) to Good
	1														Ref of Post	Plaine	s Riv	er						_										
13-6	109.3	51.0				_							4		•				1			-		•				•	•		•	5	0.83	1.20
13-5	106.6	50.3											4		٠			- 1	1					•		-			•			5	0.83	1.20
13-4	102.9	48.5		-	-				-				3		٠				1		•		-	•	•	_	1	•	•			6	0.57	1.75
13-3	98.7	81.0								_			6					_	0	-	•			_				•	٠	•		5	1.17	0.86
13-2	96.8	83.0			2								7			11.1			0													5	1.33	0.75
13-1	94.2	80.8											7						0	- 1		•			1.1			-	•			4	1.60	0.63
13-16	90.6	74.8			_				1				6						0		•	•						•	•	•		5	1.17	0.86
16-7	84.6	78.3	1	- 11						2.1			7						0			•						•	•	•		5	1.33	0.75
16-5	83.6	71.0											6						0			•						•••	•			5	1.17	0.86
16-8	82.9	79.8			-								8		-				0		-	•						•		•		3	2.25	0.44
16-4	80.0	73.5											6						0		•	•						•	•	•		5	1.17	0.86
16-3	76.7	80.5											8						0			•						•				4	1.80	0.56
16-2	75.4	77.5											7					_	0		. • .	•						•	•	•		5	1.33	0.75
16-1	71.7	78.0			_							11	8						0	11.1		٠	-					•				3	2.25	0.44
	1							-	_		_				Apt	aksic	Cree	-										-	_					-
18-4	4.7	52.5							1			-1	5	1	•	-	•	•	3					•	-	=		•		•		3	1.50	0.67
18-3	4.3	57.0							-				3	1				•	1	•	•			•	•			•	٠			6	0.57	1.75
18-2	0.8	46.0											3				•	5.00	1	•	1		1.2.	•	•			•				7	0.50	2.00

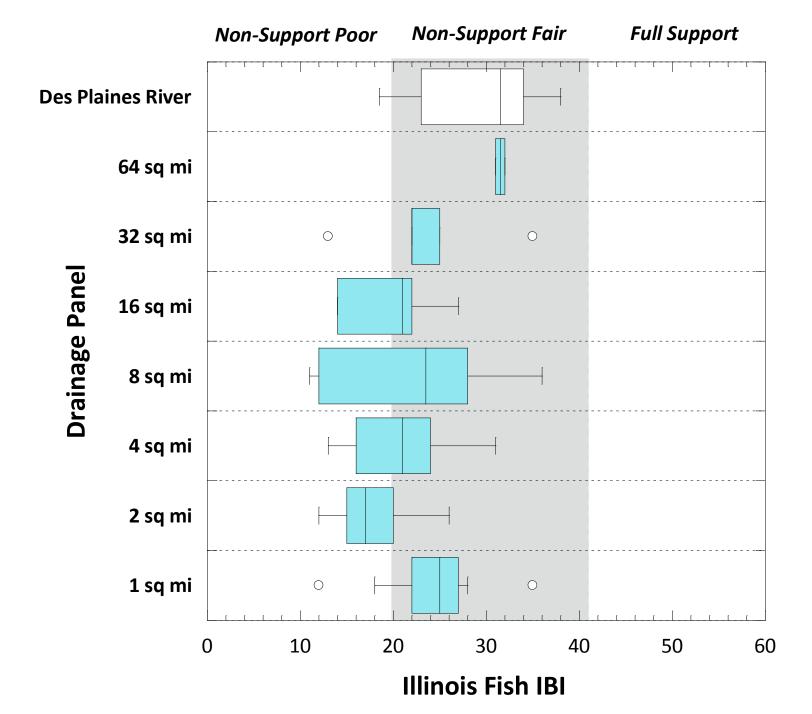
Illinois EPA Fish Index of Biotic Integrity

Table 3. Ten metrics selected for inclusion in revised Illinois IBIs. Metrics in **bold type** are new to Illinois IBIs; four others are slight variants of previous metrics.

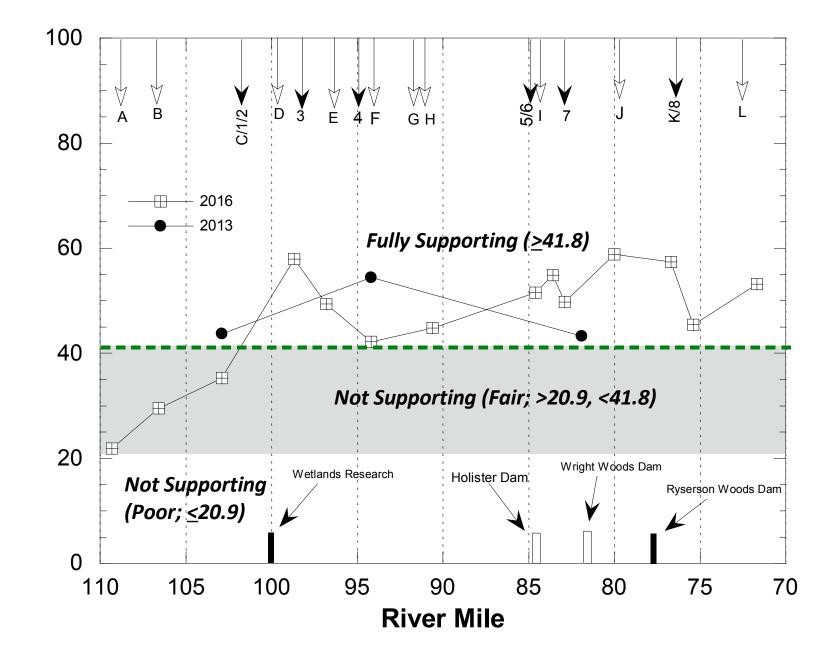
Metric Name

Description

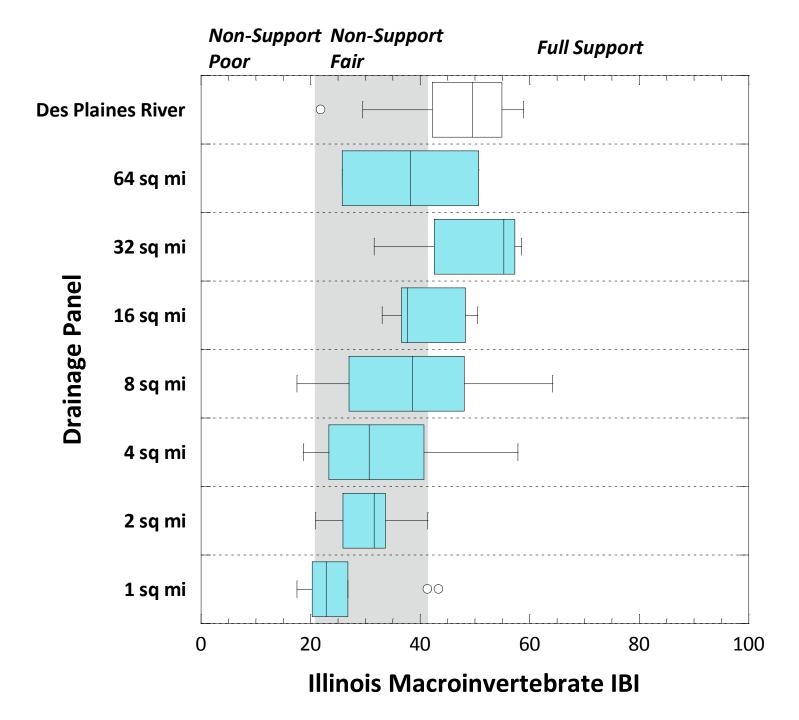
Species	s-richness metrics
NFSH	Number of native figh species
NSUC	
NSUN	Number of native fish species Iune of a field
NTOL	Numbur di native intolerar I species
NMIN	assemolages intelerry species meating an Sitate's
NBINV	Number of native benthic invertivore species
<u>Trophic</u>	<u>- or reproduction life use "biocriteria</u> "
SBI	Proportion of individuals of species that are specialist benthic invertivores
GEN	Proportion of individuals of species that are generalist feeders
LIT0T	Proportion of individuals of species that are obligate coarse-mineral-substrate spawners and not "tolerant" (i.e., excludes creek chub and white sucker)

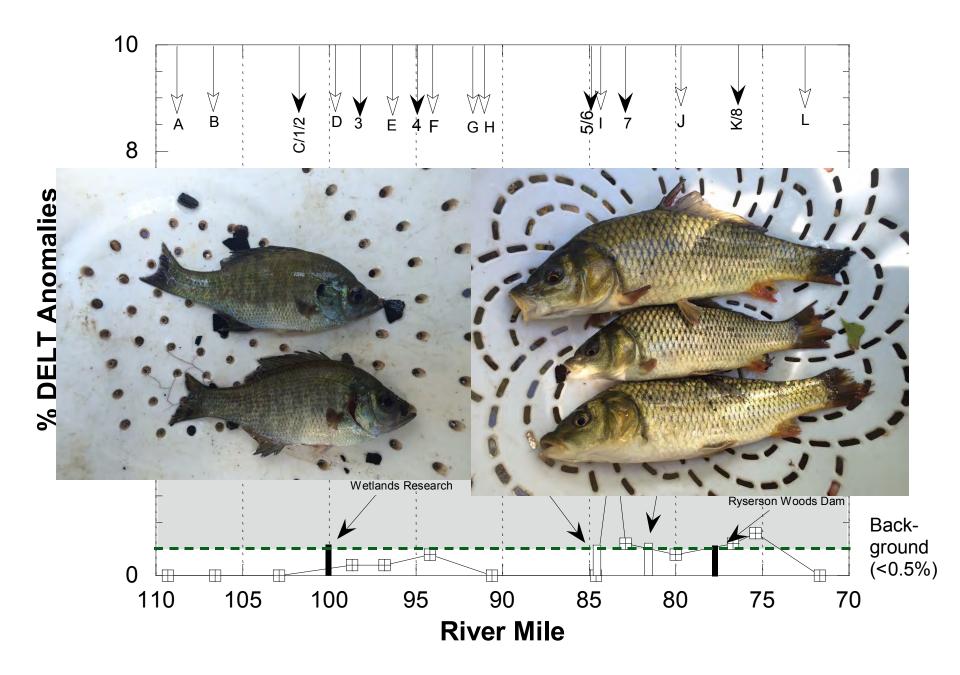

Tolerance metric**PRTOLProportion of tolerant species**

Illinois EPA IBI Narrative Evaluations


Prior IBI-score Range	Class	Description
51 - 60	A JL G	Unique Aquatic Resource (Exceptional)
41 - 50		ainmentalued Aquatic Resource (Good)
31 - 40	Ċ	Moderate Aquatic Resource (Fair)
21 - 30	D	Limited Aquatic Resource (Poor)
< 21	E	Restricted Aquatic Resource (Very Poor)

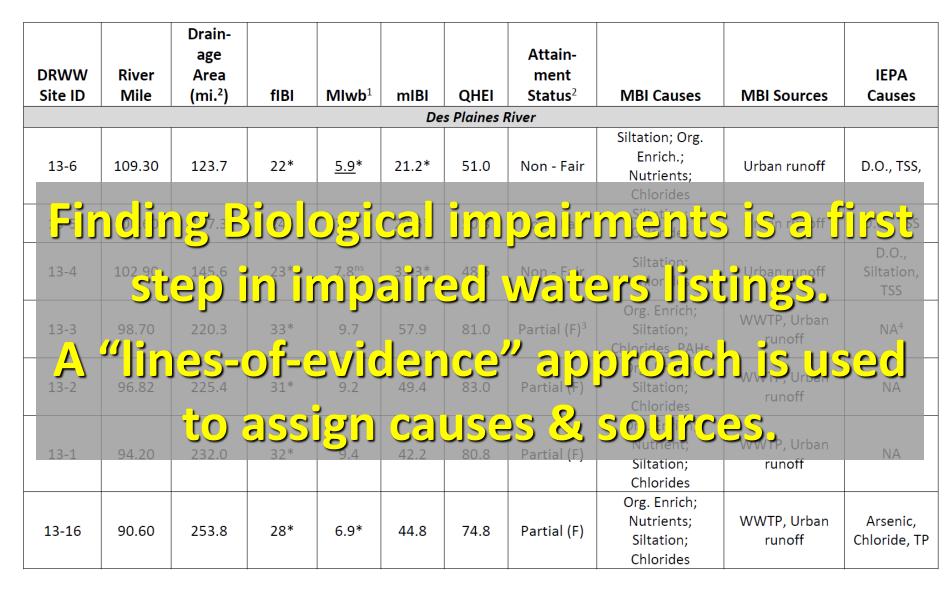
2016 2013 1983 ____ 60 V ₿ .́D) J G H ₩ K/8▲ C/1/2 ◄ 5/6 ż 7 4 F 50 Fully Supporting (>41) 40 Not Supporting (Fair; >20, <41) ⊞ \square ₽ Æ \square 30 -|| 20 ۴Ĥ Ĥ Not Supporting (Poor; <20) Wright Woods Dam 10 Wetlands Research Holister Dam Ryserson Woods Dam 0 100 95 110 105 90 85 75 80 70 **River Mile**


Fish IBI



Des Plaines River

Illinois mIBI



Biological Attributes & "Signatures"

		Drain-	Fish Assemblage						Macroinvertebrate Assemblage									
		age				%DELT											%Toxic	% Org.
DRWW	River	Area			Native	Anom-		%Mineral	%Toler-		Total	Intol.	%Toler-	EPT	%		Toler-	Enrich.
Site ID	Mile	(mi².)	fIBI	Mlwb	Sp.	alies	Intol. Sp.	Spawners	ant	mIBI	Таха	Таха	ants	Таха	EPTs	MBI	ant	Таха
Des Plaines River																		
13-6	109.30	123.67	22	5.86	11	0	1	3.45	36.36	21.92	16	0	0.794	2	3.17	5.3	0	0.6
13-5	106.60	137.29	24	7.65	11	0	1	2.74	18.18	29.53	20	1	1.379	4	11.03	5.3	0.7	16.2
13-4	102.90	145.55	23	7.78	12	0	1	6.67	41.67	35.3	17	1	0.794	3	49.21	5.4	0	2.9
13-3	98.70	220.29	33	9.74	23	0.2	2	9.49	26.09	57.86	34	3	7.958	7	22.82	5.4	3	4.8
13-2	96.82	225.36	31	9.15	19	0.21	2	11.78	26.32	49.39	34	4	6.571	4	4.49	5.7	9	8.3
13-1	94.20	232.03	32	9.41	20	0.37	1	15.38	30	42.19	25	2	5.786	7	8.01	4.7	0.3	11.9
13-16	90.60	253.75	28	6.91	12	0	1	55.88	41.67	44.77	23	5	10.093	5	16.15	5.1	5.9	5.3
16-7	84.60	266.48	35	9.25	24	0	3	9.97	25	51.61	32	5	2.824	8	7.31	4.8	4.7	11
16-5	83.60	268.07	19	7.13	11	2.56	0	15.38	36.36	54.92	31.5	4	4.57	6.5	29.45	4.9	0.8	11.1
16-8	82.90	268.9	33	9.12	22	0.60	2	14.33	27.27	49.75	36	5	9.627	8	8.7	5.7	0.6	19.3
16-4	80.00	273.21	34	8.64	18	0.36	2	15.11	27.78	58.79	28	6	2.027	9	47.3	5.0	0	6.8
16-3	76.70	314.68	18.5	4.87	10	0.58	1	5.06	13.16	57.42	32	5	2.93	11	26.95	3.4	0	4.7
16-2	75.40	323.96	36	8.78	22	0.83	3	19.05	27.27	45.37	21	3	1.104	5	38.17	4.4	0.3	15.1
16-1	71.70	358.68	38	8.53	20	0	3	43.68	30	53.15	28	6	2.694	7	38.05	5.1	0.3	16.2
				•				Ві	III Creek									
14-6	5.95	2.42	12	na	1	0	0	0	0	22.09	12	0	19.544	0	0	6.4	0	10.7
14-5	4.70	1.32	25	na	4	0	0	0	50	17.45	24	1	22.484	0	0	7.4	5	60.1
14-2	1.00	8.44	28	na	8	0	0	31.51	37.5	35.31	18	2	6.832	1	0.31	5.9	0.3	14.9
14-1	0.50	11.69	36	na	21	0	2	20.61	28.57	62.89	39	4	9.241	5	5.94	5.8	1	14.2
								Seavey L	Drainage Di	itch								
15-3	3.66	5.05	15	na	5	0	0	0	40	25.99	24	1	16.667	1	0.65	6.5	0.3	40.5
15-8	0.45	9.77	24	na	12	0	1	0.73	50	25.74	23	1	21.838	0.5	0.17	7.3	0	50.5
	Aptaksic Creek																	
18-4	4.70	1.09	27	na	5	0	0	0	60	18.46	13	0	12.541	0	0	6.1	0	16.6
18-3	4.30	2.3	17	na	7	1.49	0	0	71.43	25.61	23	1	8.766	0	0	6.0	8.1	19.8
18-2	0.80	4.94	26	na	18	0.49	1	0.74	33.33	30.74	27	2	13.934	3	6.23	6.3	7.9	19.3
18-1	0.50	5.5	24	na	12	1.14	1	1.71	33.33	22.97	22	2	14.047	0	0	6.9	47.8	33.8

Table 1. Aquatic life use attainment status in the 2016 Upper Des Plaines River watershed study area with associated causes and sources of impairment listed for partial and non-supporting sites determined by this study and by IEPA (2016) for matching sites (see footnote for fIBI and mIBI use support thresholds). fIBI, MIwb, and mIBI values that do not meet the threshold are asterisked (*) and poor values are underlined. The most limiting assemblage for partial support is indicated by a F (fish) or M (macroinvertebrates).

Table 2. E. coli values (cfu/100 ml) for samples collected in the Upper Des Plaines study area
during May-October 2016. Yellow shaded values exceed the recommended U.S. EPA
(2012) recreation use criteria.

DRWW Site ID	Basin Code	Stream Code	River Mile	N	Minimum (cfu/100 mL)	Geometric Mean (cfu/100 mL)	Maximum (cfu/100 mL)	
	1. 005.0			Des Pla	ines River			
13-6	95	656	109.3	6	27.2	92.6	387	
13-5	95	656	106.6	5	6.3	49.9	131	
13-4	95	656	102.9	6	42.2	111.6	548	
13-3	95	656	98.7	5	65.7	214.4	1050	
13-2	95	656	96.82	6	1	106.1	816	
13-1	95	656	94.2	6	88.4	147.1	219	
16-70	95	65 P P	87-1	6	81.6	126 B	3212	
0	255			<u>) (</u>			Inclica	Ľ
16-4	95	656	80	6	64.4	145.8	228	
16-3	- 95 -	556	76.7	6	65.1	138.3	1 711	
16		SKS	UD	<u>nu</u>	<u>I I E I I I</u>	neenu	308	
16-1	95	656	71.7	6	2	49.9	387	
				Hastin	gs Creek			
10-5	95	702	3.12	5	3.1	106.2	921	
10-4	95	702	1.68	5	179	390.9	980	
				North I	Mill Creek			
10-3	95	996	10.2	5	1	115.3	816	
10-2	95	996	8.1	6	98.5	374.2	1050	
10-1	95	996	1.1	6	1	150	866	
				Mill	Creek			
11-6	95	995	17.2	6	435	656.3	921	
11-5	95	995	13.8	6	1	50.8	201	
11-4	95	995	10.1	6	115	189.7	345	
11-3	95	995	7.2	5	1	74.5	488	

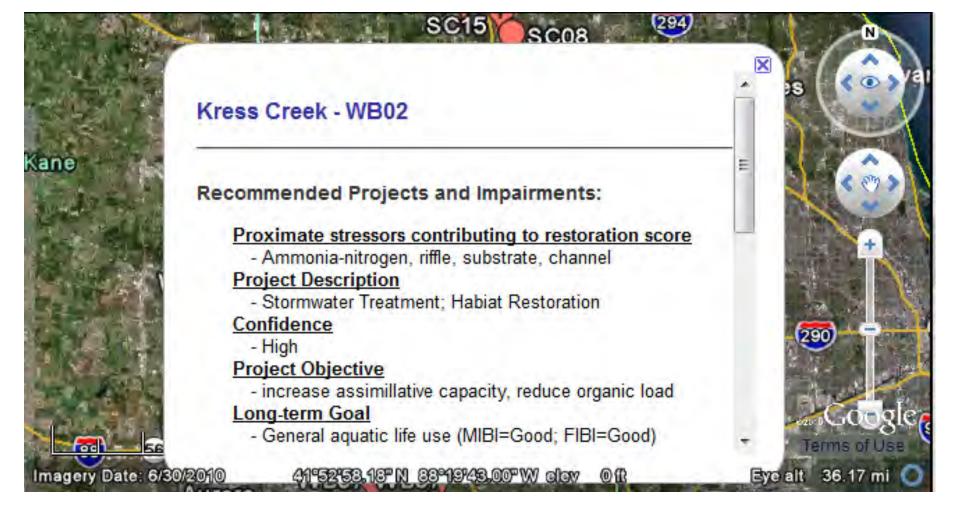
ls <mark>E</mark>.

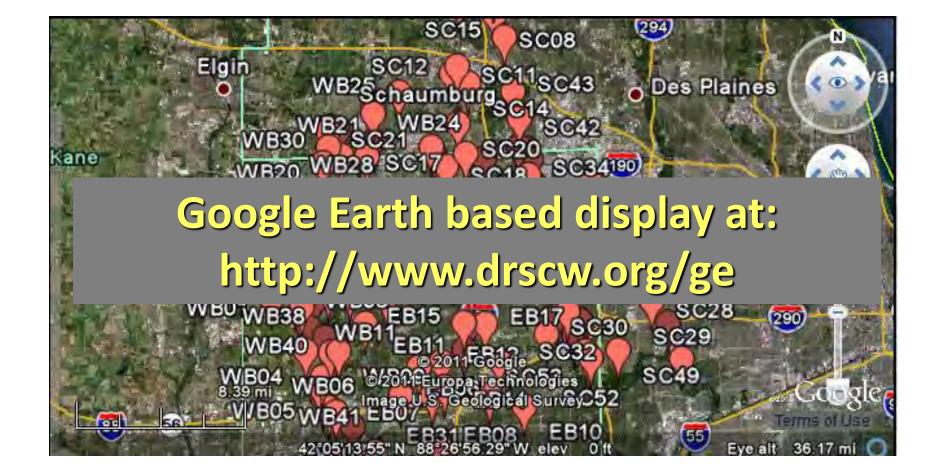
Midwest Biodiversity Institute Center for Applied Bioassessment & Biocriteria P.O. Box 21561 Columbus, OH 43221-0561

Integrated Analyses

Priority Rankings based on Estimated Restorability for Stream Segments in the DuPage-Salt Creek Watersheds

Midwest Biodiversity Institute Center for Applied Bioassessment & Biocriteria Analyzed 2006-7 database for stress:response patterns & thresholds.


An Integrated Prioritization System (IPS) was developed for DRSCVG in 2009-10 stressors were identified –



- some are representative of multiple effects.
- Revising in 2017-18 with expanded regional data.
- Incorporation of better visualization tools.

Statistically Demonstrated Stressor Indicators

Parameter	mIBI	fIBI
 Riparian Score 	5	Continuous
– Riffle Score	4	3
 Channel Score 	Continuous	10
– Substrate Score	9	Continuous
– Pool Score	7	7
– Chloride	141 mg/l	112 mg/l
– TKN	Continuous	1.0 mg/l
- BOD ₅	Continuous	Continuous
– NH3N	Continuous	0.15 mg/l

80 10 70 60 0 8 Used by DRSCWG to ground truth rule-of-thumb" riparian setback of 5 meters for DuPage County. **IPS derived recommendation of 30 m** as minimum riparian width (gain of 6.5) What range mIBI points for every 5 m >25 m Assumption

was assigned a riparian width of 50 meters; a split checking of "wide" and "moderate" was assigned a width of 25 m; moderate and narrow were assigned 15 m, and so on. After widths were assigned based on inspecting which width choices were checked, the riparian scores were plotted (as box plots) by the width category to determine how the two corresponded. The resulting plot suggests that a width of 25 m is needed on both sides (part of the assumption of how I binned the widths) to confidently be on the positive side of the IPS threshold (i.e., a riparian score greater than 5).

What are the advantages of pushing the buffer beyond the threshold?

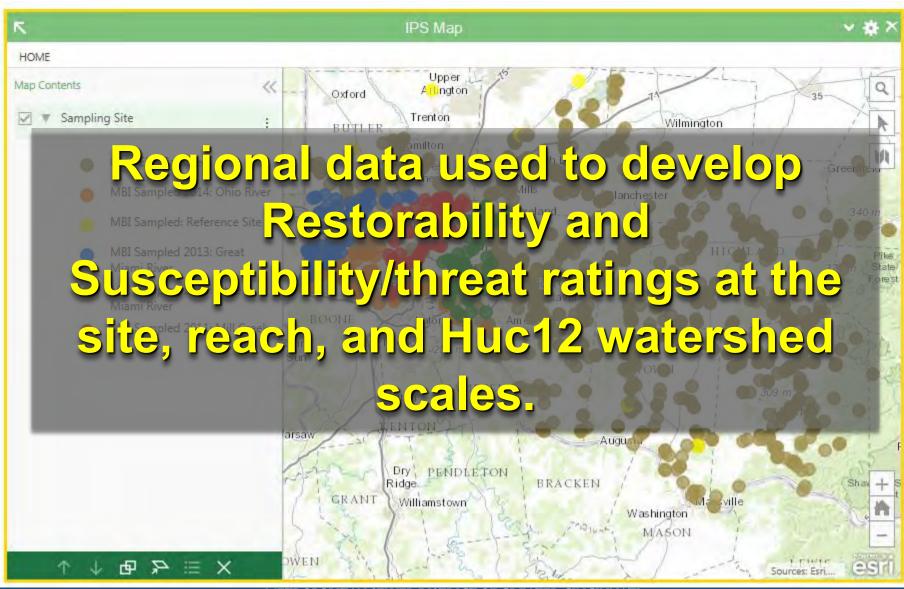
An example of where water quality can you trust your state choride woriteria base dono 1970s technology are your local aquatic now outdated.

Stephen McCracken, DRSCW Fresh Water Society Road Salt Symposium 2.3. 2012

MSDGC Integrated Prioritization System (IPS)

HINTER CONTRACTOR CONT

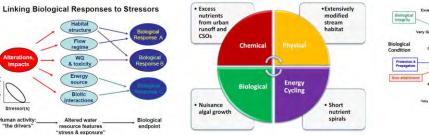
Developed in 2015 and benefiting from the DRSCWG IPS experience.



What is the IPS?

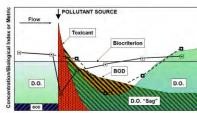
- Allows user to visualize and rank aquatic life use aspects of CWA water quality issues:
 - Identifies designated aquatic life uses (goals) for streams and rivers.
 - Identifies aquatic life impaired reaches including severity and extent.
 - Identifies probable causes of impairment.
 - <u>Standardized</u> approach to viewing data linked to attainment of aquatic life uses.
 - Sites, reaches, and watersheds ranked by <u>Restorability</u> (for impaired waters) and <u>Susceptibility</u> & <u>Threat</u> (for attaining waters).

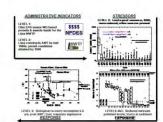
Data Used in the MSDGC IPS



Integrated Prioritization System (IPS) **Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio**

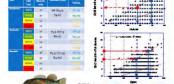
http://www.msdgc.org/initiatives/water_quality/index.html





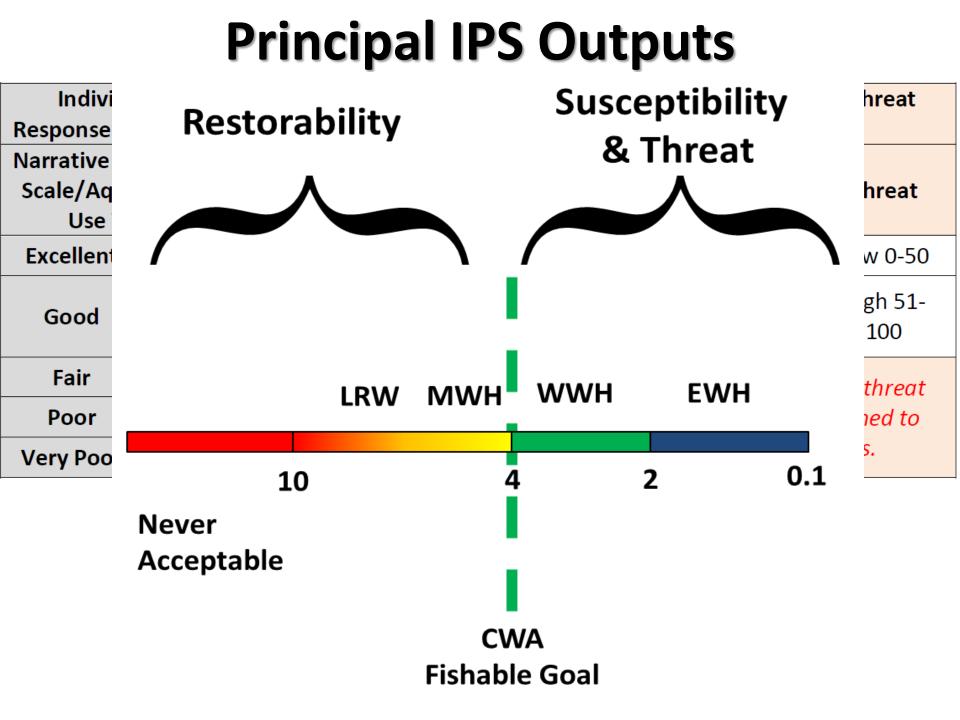
Flow

regime



Moderate High

Human Disturbance


Minimal

RIVER MILE

Stressor and Response Variables are Normalized to the Same Scale

Stressor Rank Guide								
Narrative Description	Aquatic Life Use Equivalent	Numeric Range						
Excellent	Exceptional Warmwater Habitat (EWH)	0-2						
Good	Warmwater Habitat (WWH)	2-4						
Fair	Modified Warmwater Habitat (MWH)	4-6						
Poor	Limited Resource Water (LRW)	6-8						
Very Poor	Never Acceptable	8-10						

ILLINOIS LEVEL III AND LEVEL IV ECOREGIONS

53

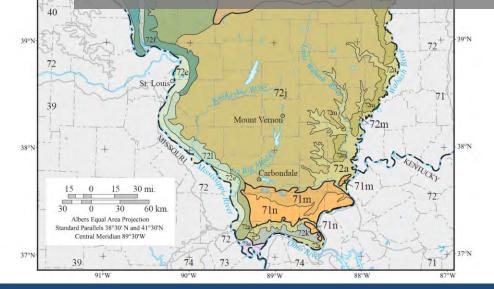
WISCONSIN

54

52

42°N

41°N


NE Illinois IPS Data

54f

Joliet

DRSCWG IPS re-development includes DRSCWG, DRWW, and IEPA regional databases which will expand the stressor and response gradients in 2017-18 across NE Illinois.

IEPA

