

Des Plaines River Watershed Workgroup NARP Workplan

February 20, 2020

- Introduction
- DRWW NARP Objectives
- Existing Data Review
- Modeling Tools for NARP Development
- Recommended NARP approach

Introduction

- <u>Nutrient Assessment Reduction Plan Dec 31, 2023</u>
- 2018 Agreement between Illinois Association of Wastewater Agencies (IAWA), Illinois Environmental Protection Agency (IEPA) and Environmental Groups
- Special conditions in NPDES permits to address the P-related impairments
 - Dissolved Oxygen
 - Nuisance Algae
- Tangentially also a requirement in MS4 permit to meet TMDL (or alternative) requirements
- Flexibility to develop watershed-specific targets

Lower Des Plaines River. Photo by Cynthia Skrukrud.

Permit Requirements

• If NARP exists

- Effluent limits based on the NARP and any applicable data

If no NARP

- Effluent requirements based on Nutrient
 Science Advisory Nutrient Science Advisory
 Committee
- Discharge cannot "cause or contribute to" violations of dissolved oxygen or narrative water quality standards

When is a NARP Required?

Based on Instream Sampling Collected by IEPA

PHOSPHORUS RELATED IMPAIRMENT

Listed on 303(d) list for:

- Dissolved oxygen
- Offensive condition (algae and/or aquatic plant growth)

RISK OF EUTROPHICATION

Information that plant, algal, or cyanobacterial growth is causing or will cause violations of water quality standards

- pH
- Dissolved oxygen
- Chlorophyll-a

Impaired Reaches

• Impaired Reaches

Segment	Miles	Impairment
IL G-25	6.9	Arsenic, Mercury, <mark>Oxygen, Dissolved</mark> , Sedimentation/Siltation, Total Suspended Solids (TSS)
 IL_G-35	5.0	Cause Unknown, Mercury, <mark>Phosphorus (Total)</mark> , Polychlorinated biphenyls
 ILG-36	7.2	Fecal Coliform, Mercury, Phosphorus (Total), Polychlorinated biphenyls
IL_G-07	10.8	Arsenic, Chloride, Fecal Coliform, Mercury, <mark>Phosphorus (Total)</mark> , Polychlorinated biphenyls
 IL_G-08	1.0	Fecal Coliform, Mercury, <mark>Oxygen, Dissolved</mark> , Total Suspended Solids (TSS)
IL_G-26	6.0	Cause Unknown, Mercury, Polychlorinated biphenyls
IL_GWA	5.5	Arsenic, Manganese <mark>, Phosphorus (Total)</mark> , Sedimentation/Siltation
IL_GST	10.7	Total Suspended Solids (TSS)
IL_GW-02	13.0	<mark>Oxygen, Dissolved</mark> , pH
IL_GU-02	11.3	Oxygen, Dissolved
IL GWAA	4.0	Arsenic, Phosphorus (Total), Sedimentation/Siltation
_	1	

NARP related impairment

Based on IEPA data only*

NARP Development Process

Nutrient Science Advisory Committee or site-specific watershed targets

Establish water quality targets

Determine phosphorus input reductions to address impairments Establish time line of required phosphorus input reductions

Develop NARP Objectives

Join/Establish a Watershed Group

Graphic based on IEPA NPDES Permitting Language

GEOSYNTEC CONSULTANTS

DRWW NARP Objectives

DRWW Objectives

۹۷ کی کی

Based on DRWW NARP Subcommittee Direction

NARP Objective IPS Tool Objective

- 1) Establish watershed-specific water quality targets
- 2) Determine phosphorus reductions needed to achieve site-specific water quality targets or if targets are infeasible
- 3) Identify mechanisms to facilitate cost-effective implementation of the NARP, including assessing feasibility of BMP implementation, prioritization, and costs; trading; and funding
- 4) Assess the other measures needed to address aquatic life impairments
- 5) Identify specific achievable projects to address water quality and aquatic life impairments and establish timeline for implementation

*Some streams

both sestonic and

might require

benthic

chlorophyll

GEOSYNTEC CONSULTANTS

Potential DRWW NARP Objective 1

Establish watershed-specific targets for water quality

- **Dissolved oxygen**
- Chlorophyll-a (Algae)
- Total phosphorus (dissolved reactive phosphorus)
- Possibly nitrogen

Non Wadeable Streams

Sestonic chlorophyll-a*

Benthic chlorophyll-a

Determine phosphorus reductions needed to achieve site-specific water quality targets or if targets are infeasible

- Point sources
 - Wastewater treatment plants
 - Pesticide application
 - Industrial

Copyright © 2005 Pearson Prentice Hall, Inc.

- Nonpoint sources
 - Small Municipal Separate Storm Sewer Systems (MS4s)
 - Agriculture

Identify mechanisms to facilitate cost-effective NARP implementation:

- Assess feasibility of BMPs, prioritization, and costs
- Point-to-point trading program
- Point-to-nonpoint trading program
- Funding plan

Existing Data Review

Data Sources for NARP Development

Temporal Coverage

Data Review Summary and Recommendations

- Good spatial coverage of instream water quality discrete and continuous stations for model calibration and understanding of the receiving water system
- Continue to collect additional data for 2019 and 2020
 - Cross-section data for mainstem Des Plaines River
 - Strategic data collection in 2020 for NARP models
 - Sites in Bull Creek watershed can be removed from additional monitoring since it is not listed as impaired

- Recommend installing a continuous monitoring water quality gauge at the upstream boundary
 - Tie in with the existing USGS Gauge 05527800 Des Plaines River at Russell, IL

Modeling Tools for NARP Development

Cannot collect data everywhere, all the time – modeling is therefore needed to fill in spatial and temporal gaps

consultants

• Mathematical approximation of reality

$$\frac{dC}{dt} = r(C_m - C) - K \cdot BOD(t)$$
 Dissolved Oxygen Model

- Based on laboratory or field data and best professional judgement
- Wide range in levels of complexity
 - Simple spreadsheet
 - Computer programs

Why do we need models for NARP ?

- Fill in spatial and temporal data gaps
- Simulate and better understand the linkage between phosphorus and dissolved oxygen/nuisance algae
- Evaluate watershed management scenarios' effectiveness in reducing impairments
 - Nutrient load reductions
- Help with policy or management decisions
 - Priority projects
 - Ordinances

- Support NPDES permitting and water quality trading
 Image: Chicago Tribune
- If needed, explain why (or why not) something unexpected occurred

Types of Model

Watershed Model

- Calculate flows and loads to the mainstream of river and key tributaries
- Provide a tool for testing and prioritizing management scenarios (nutrient load reductions)
- Instream Model
 - Simulates instream hydraulics and water quality
 - Relative influences of loadings, hydrology, and other inputs parameters on the algal and dissolved oxygen levels

Image Courtesy : Lake County

GEOSYNTEC CONSULTANTS

Model Evaluation Process

- Reviewed model selection guidance from
 - US Environmental Protection Agency
 - Water Environmental Research Foundation (WERF)
- Experience and lessons learned from previous projects models
 - DuPage River Salt Creek Workgroup
 - Fox River Watershed Group
 - Mill Creek Watershed Support
 - Peer review of Illinois River (OK/AR) watershed TMDL models

Watershed Model Options

- Developed model selection criteria to meet NARP objectives
- Refined evaluation
- Preliminary Recommendation – HSPF
- Added SWAT based on Lake County SMC recommendation

Model	SWA T	HSPF	WARM F	AGWA
Spatial Component	•	•	Θ	Θ
Sub Daily Timestep	•	•	Θ	Θ
Instream Water Quality		•	igodol	igodot
Sediments	Θ	•	Θ	Θ
Nutrient Output by Land Use	•	•	Θ	$igodoldsymbol{\Theta}$
Auto-calibration	•	•	0	0
User Support/Training	•	e	•	•
GIS Interface	•	•	•	•
Software Updates	•	Θ	0	0
Model Score	25	25	18	18

GEOSYNTEC CONSULTANTS

Instream Water Quality Models Options

- Model choices for criteria specified
 - CE-QUAL-ICM

- EFDC

- CE-QUAL-W2
- ECOMSED

- WASP7
- QUAL2kw
- Used WERF's Nutrient Modeling Toolbox (NMT) to select instream model
- Preliminary recommendation: QUAL2kw
 - Dynamic version of QUAL2K which is typically applied for similar applications
 - QUAL2kw is being used the FRSG* and DRSCW**
 - Level of effort required to setup is less as compared to other models

* Transitioned from steady-state to time variable **Uses a steady state version of QUAL2kw GEOSYNTEC CONSULTANTS

Recommended NARP Approach

consultants

Recommended Steps for DRWW NARP

Estimated Cost – \$559,900

Phase	Description	2020	2021	2022
1	Conduct data monitoring and analysis	\$265,800		
2	Develop Modeling Tools	\$100,800	\$75,400	
3	Watershed Management Scenarios		\$39,700	
4	Implementation Plan and Schedule			\$77,800
Total Budget Estimate for Year*		\$366,600	\$115,100	\$77,800
Planned Budget		\$160,000		
Additional Budget required for NARP		\$206,600	\$115,100	\$77,800

Project Schedule

NARP Workplan Report

Possible NARP Outcomes

Point source reductions in P not needed Point source reductions in NARP P needed Both point and nonpoint source reductions in P needed Other or additional measures needed **GEOSYNTEC CONSULTANTS**

Questions

