

Biological and Water Quality Assessment of Upper Des Plaines River Subwatersheds: Year 1 Rotation 2017

Peter A. Precario, MBI Executive Director James Lane, MBI Board President

Report citation:

 Midwest Biodiversity Institute (MBI). 2018. Biological and Water Quality Assessment of Upper Des Plaines River Subwatersheds: Year 1 Rotation 2017. Indian, Buffalo, and Aptakisic Creek Subwatersheds. Lake County, Illinois. Technical Report MBI/2018-12-10. Columbus, OH 43221-0561. 59 pp. + appendices.

Biological and Water Quality Assessment of Upper Des Plaines River Subwatersheds: Year 1 Rotation 2017

Indian, Buffalo, and Aptakisic Creek Subwatersheds.

Lake County, IL

Technical Report MBI/2017-10-10

December 31, 2018

Prepared for:

Des Plaines Watershed Workgroup 500 W. Winchester Road Libertyville IL 60048 Joe Robinson, Monitoring Committee Chair jorobinson@northshorewrd.org

Submitted by:

Midwest Biodiversity Institute P.O. Box 21561 Columbus, Ohio 43221-0561 Chris O. Yoder, Research Director <u>cyoder@mwbinst.com</u>

TABLE OF CONTENTS

LIST OF FIGURESiv
ACKNOWLEDGEMENTS
FOREWORDix What is a Biological and Water Quality Survey?ix
Scope of the 2017 Biological and Water Quality Assessment
EXECUTIVE SUMMARY
Summary of Findings
Aquatic Life Condition Assessment ES-1
Causes and Sources of Non-attainment ES-1
Synthesis of Results ES-5
Recreational Use Assessment ES-6
Biological and Water Quality Assessment of Upper Des Plaines River Subwatersheds: Year 1
Rotation 2017
STUDY AREA DESCRIPTION
Major Point Sources
Nonpoint Sources
-
Sampling Sites Selection and Locations
Spatial Survey Design
METHODS
Chemical/Physical Water Quality - Methods
Water Sampling
Sediment Sampling7
Nutrient Effect Assessment Procedure7
Biological Assemblage Sampling7
Fish Assemblage Methods7
Macroinvertebrate Methods
Habitat Assessment9
Data Management9
Determining Use Attainability9
Determining Use Attainment9
Determining Causal Associations10
Causal Diagnosis

Hierarchy of Water Indicators
Causal Associations12
RESULTS – CHEMICAL/PHYSICAL WATER QUALITY
Water Column Chemistry13
Exceedances of Biological Effect and Reference Thresholds
Demand and Nutrient Related Parameters15
Dissolved Oxygen (D.O.)
Ammonia-Nitrogen (N)
Total Phosphorus
Total Nitrates (NO₃-N)
Total Kjeldahl Nitrogen (TKN)
Total Suspended Solids (TSS)
Temperature
Urban Parameters
Dissolved Materials in Urban Runoff
Sediment Chemistry
Sediment Organics
Physical Habitat Quality for Aquatic Life - QHEI 37 Year 1 2017 Study Area 37
44 Average Assemblages – Macroinvertebrates Avera 1 2017 Study Area
Biological Assemblages – Fish
SYNTHESIS 49 REFERENCES 53

APPENDICES

Appendix A. Upper Des Plaines Year 1 2017 Sites and Indicators	A-1
Appendix B. Upper Des Plaines Year 1 2017 Fish Assemblage Data	
B-1: Index of Biotic Integrity (IBI) Metrics & Scores, Modified Index of Well-Being	(Mlwb)
Scores	B-1
B-2: Fish Species Grand (all sites combined)	B-7
B-3: Fish Species by Sampling Event	B-9
Appendix C. Upper Des Plaines Year 1 2017 Macroinvertebrate Assemblage Data	C-1
C-1: Macroinvertebrate IBI Metrics and Scores	C-2
C-2: Macroinvertebrate Taxa by Site and Sample	C-7
Appendix D. Upper Des Plaines Year 1 2017 Habitat Data	D-1
D-1: Upper Des Plaines 2017 QHEI Metrics and Scores	D-2

LIST OF FIGURES

Figure 1.	Major causes associated with aquatic life impairments in the Year 1 subwatersheds, 2017
Figure 2.	The degree of urbanization in the 2017 Year 1 study area as reflected by the edge of pavement coverage for Lake Co. The 2017 sampling locations are included
Figure 3.	Location of biological, chemical, and habitat sampling sites in the Year 1 Study area, 2017. Site codes correspond to sites listed in Appendix A-1
Figure 4.	The hierarchy of administrative and environmental indicators which can be used to support monitoring and assessment, reporting, and an evaluation of the effectiveness of pollution controls on a receiving stream. This is patterned after a model developed by U.S. EPA (1995a,b) and enhanced by Karr and Yoder (2004) 11
Figure 5.	Daily flow measured at the USGS gage on Buffalo Creek (USGS 05528500) near Gurnee, IL during calendar years 2017 (upper) and 2016 (lower). The dashed lines are the 10 th and 50 th percentile flows; the seven-day, ten year critical low flow is indicated by the solid line and the span of biological data collection is indicated by a shaded bar along the x-axis
Figure 6.	Dissolved oxygen (D.O.) concentrations (mg/L) measured continuously by Datasondes deployed for 3-4 day periods during August 21-24 and 24-27, 2017 at 14 locations in the 2017 study area. Box-and-whisker plots show the minimum, maximum, 25 th and 75 th percentiles, median, and outlier (>2 interquartile ranges from the median) values. The IEPA August-February minimum (3.5 mg/L) and the 7- day average D.O. criteria are shown by solid and dashed lines
Figure 7.	Concentrations of ammonia-N by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent effect thresholds correlated with impaired biota in the DuPage River-Salt Creek IPS study (0.15 mg/L) and the SW Ohio IPS study (0.56 mg/L)

Figure 8.	Concentrations of total phosphorus by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent regional reference and IEPA non-standard (not effect based) thresholds
Figure 9.	Concentrations of total nitrate-N by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent regional reference and IEPA non-standard (not effect based) thresholds
Figure 10.	Concentrations of total Kjeldahl nitrogen (TKN) by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box- and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent two different effect based thresholds
Figure 11.	Concentrations of total suspended solids (TSS) by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box- and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent a regional reference and effect based thresholds
Figure 12.	Temperature (°C) measured continuously by Datasondes deployed for 3-4 day periods during August 21-24 and 24-27, 2017 at 14 locations in the 2017 study area. Box-and-whisker plots show the minimum, maximum, 25 th and 75 th percentiles, median, and outlier (>2 interquartile ranges from the median) values. The IEPA maximum (32.2C) and the Ohio EPA General Ohio River Basin maximum (29.4°C) and
Figure 13.	average (27.8°C) criteria are shown by solid and dashed lines
Figure 14.	Qualitative Habitat Evaluation Index (QHEI) scores in the Year 1 study area in 2016 and 2017. Values in the principal subwatersheds are shown as box-and-whisker plots (upper panel) and as a scatter plot of individual sites by drainage area (lower panel). The narrative ranges of QHEI scores from excellent to very poor are indicated 40
Figure 15.	The number of modified QHEI attributes at sites in the Year 1 study area in 2016 and 2017. Modified attributes in the principal subwatersheds are shown as box-and-whisker plots (upper panel) and as a scatter plot of the number of modified attributes at individual sites on a reverse scale by drainage area (lower panel) along a reverse scale on the y-axis. Thresholds for the likelihood of the number of modified attributes causing a biological impairment are indicated

Figure 16. The number of good QHEI attributes at sites in the Year 1 study area in 2016 and 2017. Good QHEI attributes in the principal subwatersheds are shown as box-and-

LIST OF TABLES

Table 1.	Aquatic life use attainment status in the 2017 Year 1 Upper Des Plaines River subwatersheds study area with associated causes and sources of impairment listed
	for partial and non-supporting sites determined by this study and by IEPA (2018) for matching sites (see footnote for fIBI and mIBI use support thresholds). fIBI and mIBI
	values that do not meet the General Use threshold are asterisked (*) and poor
	values are underlined. Causes of impairment that exceed thresholds in the Illinois
	2018 Integrated Report guidance are underlined. (NA – Not Assessed; WWTP –
	Wastewater Treatment Plant) 2
Table 2.	<i>E. coli</i> values (cfu/100 ml) for samples collected in the Year 1 subwatersheds study
	area during May-October 2017. Blue shaded bars are the actual values and red
	shaded values exceed the recommended U.S. EPA (2012) 90-day geometric mean
	(126 cfu/100 mL) and maximum STV (410 cfu/100 mL) recreation use criteria
Table 3.	Level IV subregions of the 2016 Upper Des Plaines River watershed study area and
	their key attributes (from Woods et al. 1995) 2
Table 4.	Chemical thresholds consisting of Illinois water quality criteria, biological effects
	thresholds, and non-effect reference benchmarks used to support the assignment of
	causes to observed biological impairments in the 2017 study area. Only chemical
	parameters that were detected in water samples are included
Table 5.	Dissolved oxygen (D.O.) concentrations (mg/L) based on grab samples collected at
	22 locations in the Year 1 2017 study area showing the mean, minimum, maximum,
	and width between the minimum and maximum values
Table 6.	Results of applying an interim modified Stream Nutrient Assessment Procedure to
	14 sites in the 2017 Year 1 study area. Descriptions of how each result reflects the
	degree of nutrient enrichment effects and results in an assignment of enrichment
	status are at the bottom of the matrix
Table 7.	Mean specific conductance and concentrations of total suspended solids (TSS),
	chloride, total Kieldahl nitrogen (TKN), total copper, and total zinc measured at

Table 8.	sampling sites in the Year 1 2017 study area during May-October 2017. Yellow highlighted values exceed thresholds listed at the bottom of the table
	the bottom
Table 9.	Sediment PAH levels (mg/kg) in sediments at 16 sites in the 2017 Tear 1 study area. Highlighted cells indicate an exceedance of one or more thresholds listed at the bottom (TEL – threshold effect level; PEL – probable effect level; TEC – threshold
	effect concentration; PEC – probable effect concentration)
Table 10.	Qualitative Habitat Evaluation Index (QHEI) matrix showing good and modified habitat attributes at each site in the Year 1 study area in 2017. (■- good habitat attribute; ● - high influence modified attribute; ●- moderate influence modified attribute; ●- moderate influence modified
	attribute). Modified to good attribute ratios >2.0 are yellow, orange, or red
	highlighted in accordance with the predominance of modified attributes
Table 11.	The fifteen most abundant macroinvertebrate taxa collected in the Year 1 study area
	in 2017 including number collected, taxa group, functional group, and taxa tolerance
	assignments
Table 12.	Selected fish and macroinvertebrate assemblage attributes for sites sampled in the Year 1 study area in 2017. Biological index scores are shaded by level of use support: green – fully supporting; yellow – non-support fair; red – non-support poor; key metrics as signatures of toxic or organic enrichment impacts are shaded in green, yellow, and red based on Yoder and DeShon(2003) and IBI or mIBI metric ratings
Table 13.	The fifteen most abundant species collected in the Year 1 subwatersheds in 2017
	with IL and OH tolerance assignments, numbers collected, and percent collected by
	number (species with blank tolerance are intermediate)
Table 14.	Key chemical, physical, and biological response indicators of impairment observed at
	each site in the Year 1 subwatersheds study area in 2017. Proximate causes
	associated with biological impairments are drawn from exceedance and other
	analyses of habitat, nutrient effects, chemical threshold exceedances, sediment
	chemical exceedances, and biological response signatures. See footnotes for table
	references and biological, physical, and chemical threshold intervals

ACKNOWLEDGEMENTS

Chris O. Yoder, MBI, served as the report editor and project manager. Technical contributions to the report and the analyses were made by Edward T. Rankin, Matthew Sarver, Vickie L. Gordon, Martin J. Knapp, and Blair Prusha, all of MBI. Database management and data analysis was provided by Edward T. Rankin and Vickie L. Gordon. Field crew leaders were Blair Prusha (macroinvertebrate assemblage), Matthew Sarver (fish assemblage and habitat), and Vickie L. Gordon (Datasonde and Benthic Chlorophyll a). Field sampling assistance was provided by Alex Roller-Knapp, Zachary Alley, Justin England, Audrey Foster, Brent Glover, and Carson Calhoun. Logistical and administrative support at MBI was provided by Allison Boehler and Emily Frechette. Chemical analysis was provided by Suburban Labs for samples collected by DRWW and by the University of Washington for benthic chlorophyll a. Overall DRWW project management was directed by Beth Adler, DRWW Technical Coordinator. We also recognize DRWW for assistance provided with the location of and access to sampling sites.

FOREWORD

What is a Biological and Water Quality Survey?

A biological and water quality survey, or "bioassessment", is an interdisciplinary monitoring effort coordinated on a waterbody specific or watershed scale. This may involve a relatively simple setting focusing on one or two small streams, one or two principal stressors, and a handful of sampling sites or a much more complex effort including entire watersheds, multiple and overlapping stressors, and tens of sites. The 2017 study included the Year 1 subwatersheds in the Upper Des Plaines River subbasin consisting of the Indian, Buffalo, and Aptakisic Creek subwatersheds that encompass a reassessment of the baseline monitoring of 23 sites sampled in 2016. The principal focus of the 2017 bioassessment is on the status of the Illinois General Use for aquatic life and recreation.

Scope of the 2017 Biological and Water Quality Assessment

The Midwest Biodiversity Institute (MBI) was contracted by the Des Plaines Watershed Workgroup (DRWW) to develop a biological and water quality monitoring and assessment plan for Upper Des Plaines River and tributaries within Lake County, IL. The plan was incorporated into a Quality Assurance Project Plan (QAPP; DRWW 2016) that was submitted to and approved by Illinois EPA. The spatial sampling design consisted of an intensive pollution survey and geometric allocation of sites. This design was employed to fulfill multiple purposes and goals in addition to the determination of the existing status of the biological assemblages and their relationship to chemical, physical, and biological stressors. Targeted sites were positioned upstream and downstream from major discharges, other sources of potential pollution releases and contamination, and major tributaries to provide a "pollution profile" of the major mainstem streams and rivers. Sampling locations in the smaller tributaries were allocated by a geometric progression of drainage area to a "resolution" of 0.5-1.0 square miles. The major objectives include:

- Determine the aquatic life status of each sampling location in quantitative terms, i.e., not only if a waterbody is impaired, but the spatial extent and severity of the impairment and the respective departures from established criteria;
- 2. Determine the proximate stressors that correspond to observed impairments for the purpose of targeting appropriate management actions to those stressors; and,
- 3. Screen for any potential issues with use attainability.

To meet these objectives data was collected with methods that provide high quality results and in conformance with the practices of Illinois EPA (IEPA 2010a,b; 2011a-g; 2014a,b) and Illinois DNR (2010a,b) and under a project QAPP approved by IEPA (DRWW 2016).

Previous biological assessments of the Upper Des Plaines River basin streams and rivers include major surveys by Illinois EPA (IEPA 1988,), Illinois DNR (IDNR; Pescitelli 2016; Pescitelli and Rung 2010a,b; Day 1991; Heidinger 1989; Bertrand 1984; Langbein and Wright 1976; Muench 1968), Illinois Natural History Survey (Bilger et al. 2016; Sherwood et al. 2016), U.S. Geological Survey (Steffeck and Streigl 1989), Shedd Aquarium (Bland and Willink 2015), and others (Slawski et al. 2008). Some of these surveys included the entirety of the Des Plaines River and others focused on the Upper Des Plaines defined as the mainstem and tributaries upstream from the confluence with Salt Creek. Smaller surveys of specific tributaries in Lake Co. have also been conducted, but none were of sufficient scope or coverage to meaningfully compare to the Year 1 watershed bioassessments of the Indian, Buffalo, or Aptakisic Creek subwatersheds. The recent basin-wide fish surveys by IDNR included only a single site located on Indian Creek. Other fish surveys include two sites on Seavey Drainage Ditch (pre- and post-dam removal 2008, 2010), a qualitative fish survey in Seavey Ditch and Indian Creek in June 2016 (Bland et al. 2016) and a more recent and comprehensive survey of fish, macroinvertebrates, and mussels in streams potentially impacted by the State Route 53 extension northward through Lake Co. in 2014 and 2015 (Sherwood et al. 2016; Bilger et al. 2016; Douglas et al. 2016). This included 3 sites in the Buffalo Creek subwatershed and 7 sites in Indian Creek subwatershed sampled for fish and 4 of these 10 sites sampled for macroinvertebrates.

EXECUTIVE SUMMARY

Summary of Findings

Aquatic Life Condition Assessment

The primary indicators of the status of the Illinois General Use for aquatic life are the Illinois fish and macroinvertebrate Indices of Biotic Integrity and generally following the guidance in the 2018 Integrated Report (IEPA 2018) with certain exceptions. The status of aquatic life is reported here in an attainment table (Table 1) and expressed as full, partial, or non-support and based on the most limiting of either the fish or macroinvertebrate results. Non-support is further subdivided into non-support fair and non-support poor; a partial support category is added to clarify instances where only one of the two assemblages attains the General Use support fish or macroinvertebrate threshold. Of the 23 sites assessed for the General Use for aquatic life none were in full support, two (2) in partial support, 11 non-support-fair, and 10 non-support poor. The fish assemblage was the limiting factor in all of the non-support and partial support determinations failing to meet the IEPA General Use threshold for the fIBI at any sampling site in the 2017 Year 1 subwatersheds. This finding is consistent with the watershed wide results observed in 2016 by MBI (2017) and 2013 by IDNR (Pescitelli 2016). The macroinvertebrate assemblage attained the General Use threshold for the mIBI at four (4) of the 23 biological sampling sites.

Causes and Sources of Non-attainment¹

Causes and sources were determined for each impaired site and included categorical or parameter level associations and their sources (if known). These were compared to the IEPA derived causes listed in the 2018 Integrated Report (IEPA 2018) for coinciding sites. Assigning causes involves using a lines of evidence approach where chemical and physical threshold exceedances within a causal category (or of a parameter) is logically related to a biological impairment, not just simply based on the coincidental exceedance of a criterion or other threshold. Knowing about relationships that are supported by prior empirical observations in other studies and our own experiences helps boost the confidence in causal assignments. This process varies somewhat from that of IEPA in that additional effect thresholds were used to assign causes beyond those used by IEPA.

Eleven (11) causal categories and three (3) source categories were identified for the 2017 study area (Table 1; Figure 1). Of these causes, three (3) were habitat related (siltation, channel modification, and shallow depth) and eight (8) were chemical (low dissolved oxygen, organic enrichment, nutrient enrichment, chlorides, total dissolved solids [TDS], metals, and polycyclic aromatic hydrocarbons [PAHs]). Causes such chlorides (16 of 23 sites), habitat related (15 of 23 sites), and nutrient enrichment (13 of 23 sites) were distributed throughout the study area

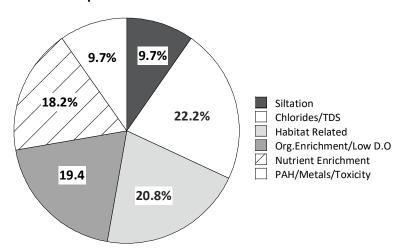
¹ A *Cause* is an agent (or agents) associated with an aquatic life or recreational use impairment; a *Source* is the origin of the causal agent. Nomenclature generally follows U.S. EPA and state 303[d] listing guidelines.

Table 1. Aquatic life use attainment status in the 2017 Year 1 Upper Des Plaines River subwatersheds study area with associated causes and sources of impairment listed for partial and non-supporting sites determined by this study and by IEPA (2018) for matching sites (see footnote for fIBI and mIBI use support thresholds). fIBI and mIBI values that do not meet the General Use threshold are asterisked (*) and poor values are underlined. Causes of impairment that exceed thresholds in the Illinois 2018 Integrated Report guidance are <u>underlined</u>. (NA – Not Assessed; WWTP – Wastewater Treatment Plant)

		Drainage								
DRWW	River	Area				Attainment			IEPA	
Site ID	Mile	(mi.²)	fIBI	mIBI	QHEI	Status ¹	MBI Causes	MBI Sources	Causes	
		1	r			Aptakisic Creel	<	1	1	
18-4	4.70	1.09	28*	21.5*	47.0	Non-Fair	Siltation,Channel modification,Habitat alterationOrganic enrich., TDSUrban runoff			
18-3	4.30	2.30	<u>16</u> *	28.2*	55.5	Non-Poor	Channel mod., Nutrient enrich., Chloride, PAH	Habitat alteration, Urban runoff		
18-2	0.80	4.94	24*	24.0*	45.0	Non-Fair	<u>Siltation</u> , Channel mod., Low D.O., Chloride	Habitat alteration, Urban runoff	NA	
18-1	0.50	5.50	22*	25.6*	.6* 48.0 Non-Fair		Channel mod Nut enrich			
				Unna	med Tribut	tary to Aptakisi	c Creek @RM 4.6			
18-5	0.05	0.99	24*	26.1*	43.5	5 Non-Fair <u>Siltation</u> , Channel mod., Chloride Urban ru		Urban runoff	NA	
						Buffalo Creek				
17-5	14.0	1.37	25*	23.7*	63.0	Non-Fair	Organic enrich., Chloride	Urban runoff	TSS	
17-3	7.70	9.61	<u>15</u> *	49.6	73.0	Non-Poor	Non-Poor Organic enrichment Urban runc		135	
17-2	6.10	22.1	<u>18</u> *	50.8	64.3	Non-Poor	Channel mod., Low D.O., Organic & Nut. enrich., Chloride	Urban runoff	TSS	
17-1	0.75	29.2	25*	30.8*	46.5	Non-Fair	Siltation, Channel mod., Low D.O., Nut. enrich., Chloride, PAHs	Lirban runoff		
				Unna	med Tribu	tary to Buffalo	Creek @RM 7.56	·		
17-4	0.68	8.55	<u>8</u> *	31.2*	52.5	Non-Poor	Low D.O., Nut. enrich., Chloride	Urban runoff	NA	

Table 1. Aquatic life use attainment status in the 2017 Year 1 Upper Des Plaines River subwatersheds study area with associated causes and sources of impairment listed for partial and non-supporting sites determined by this study and by IEPA (2018) for matching sites (see footnote for fIBI and mIBI use support thresholds). fIBI and mIBI values that do not meet the General Use threshold are asterisked (*) and poor values are underlined. Causes of impairment that exceed thresholds in the Illinois 2018 Integrated Report guidance are <u>underlined</u>. (NA – Not Assessed; WWTP – Wastewater Treatment Plant)

DRWW	River	Drainage Area				Attainment			IEPA
Site ID	Mile	(mi.²)	fIBI	mIBI	QHEI	Status ¹	MBI Causes	MBI Sources	Causes
			[[]		Indian Creek			1
15-9	10.83	2.68	<u>19</u> *	22.6*	55.5	Non-Poor	Shallow depth, Low D.O., Organic & Nut. enrich., Chloride	Urban runoff	
15-6	9.83	3.70	22*	23.2*	59.5	Non-Fair	Shallow depth	Habitat alteration	
15-5	5.40	17.3	25*	39.4*	66.5	Non-Fair	Nutrient enrichment	Urban runoff	Low D.O.
15-2	2.41	35.0	38*	46.8	73.0	Partial	Nutrient enrich., Chloride, PAHs	Urban runoff	
15-1	0.17	36.4	34*	53.5	65.0	Partial	Channel mod., Nutrient enrich.	Habitat alteration, Urban runoff	
		•	-		West	Branch Indian	Creek		-
15-10	0.80	2.22	<u>12</u> *	<u>18.1</u> *	58.5	Non-Poor	Shallow depth	Habitat alteration	NA
	•					Kildeer Creek			
15-12	5.20	2.08	<u>17</u> *	40.0*	41.5	Non-Poor	Siltation, Organic & Nutrient enrichment	Habitat alteration, Urban runoff	
15-7	4.60	2.86	<u>16</u> *	32.2*	48.5	Non-Poor	Shallow depth, Low D.O., Organic & Nut. enrich., Chloride	Habitat alteration, Urban runoff	
15-13	2.21	5.01	<u>16</u> *	39.8*	61.0	Non-Poor	Chloride, Metals (As, Fe) Urban runoff		- NA
15-4	0.17	6.80	22*	33.0*	53.5	Non-Fair	<u>Siltation</u> , Low D.O., Nutrient enrich., Chloride	Urban runoff	


Table 1. Aquatic life use attainment status in the 2017 Year 1 Upper Des Plaines River subwatersheds study area with associated causes and sources of impairment listed for partial and non-supporting sites determined by this study and by IEPA (2018) for matching sites (see footnote for fIBI and mIBI use support thresholds). fIBI and mIBI values that do not meet the General Use threshold are asterisked (*) and poor values are underlined. Causes of impairment that exceed thresholds in the Illinois 2018 Integrated Report guidance are <u>underlined</u>. (NA – Not Assessed; WWTP – Wastewater Treatment Plant)

DRWW	River	Drainage Area				Attainment			IEPA
Site ID	Mile	(mi.²)	fIBI	mIBI	QHEI	Status ¹	Status ¹ MBI Causes		Causes
					Sea	vey Drainage D	Ditch		
15-3	3.66	5.05	<u>12</u> *	<u>17.4</u> *	62.0	Non-Poor	Nutrient enrich., Chloride	Urban runoff	
15-8	0.45	9.77	25*	30.6*	550 I NON-Fair		Channel mod., Low D.O., Organic & Nutrient enrich., Chloride	Habitat alteration, Urban runoff	NA
					F	orest Lake Dra	in		
15-11	0.83	1.70	20*	22.0*	48.3	Non-Fair	Siltation, Shallow depth, Channel modification	Habitat alteration	NA

¹ - IEPA General Aquatic Life Use Support Thresholds

AQLU Status	fIBI	mIBI
Full Support	<u>></u> 41	<u>></u> 41.8
Non-Support Fair	>20,<41	<u>></u> 20.9,<41.8
Non-Support Poor	<u><</u> 20	<20.9

Major Causes Associated with Aquatic Life Impairments: Year 1 Subwatersheds 2017

Figure 1. Major causes associated with aquatic life impairments in the Year 1 subwatersheds, 2017

while others were confined to specific subwatersheds (organic enrichment), localized (unknown toxicity, metals), or sporadic in the study area (PAHs). Urban runoff was the most pervasive source in the 2017 study area being assigned to 20 of 23 sites. Habitat alteration was assigned to 10 of 23 sites and a single site was affected by the sole wastewater treatment plant (WWTP) discharge in the 2017 study area. The causes and sources were derived from the analyses described in the SYNTHESIS section (p. 49) where the rationale for assigning causes and sources is

detailed. These constitute the principal causes and sources that would need to be addressed to resolve the aquatic life impairments listed in Table 1. Illinois EPA (2018) listed a different set of causes at only three (3) sites which corresponded to nine (9) of the 23 MBI biological sites for total suspended solids and low D.O. The listing of more causes by MBI is due to use of a wider array of effect thresholds, differences in the interpretation of impairments, and most of all differences in the spatial survey design. IEPA sampled 20 fewer sites than MBI in the 2017 study area (Table 1) which left seven (7) streams unassessed for 303(d) purposes.

Synthesis of Results

Biological signatures of siltation and habitat related impacts, toxicity, nutrient enrichment, dissolved solids, and organic enrichment from multiple sources were evident throughout the 2017 study area. Organic enrichment related biological responses were in the form of an increased proportion of organic enrichment tolerant species and by total Kjeldahl nitrogen (TKN) values that exceeded biological thresholds. Nutrient enrichment was based on a modification of the Ohio Stream Nutrient Assessment Procedure (SNAP; Ohio EPA 2015b) and the more recent large rivers nutrient methodology (Miltner 2018) which includes the width of the diel D.O. swing, benthic chlorophyll a, and selected nutrient measures. A toxic response signature in the macroinvertebrates occurred downstream from the Lake Co. Des Plaines River WWTP in Aptakisic Creek which was repeated from 2016. Sediment contamination was revealed with PAH compounds exceeding consensus based threshold and probable effect levels at five (5) sites. D.O. criteria exceedances were measured by both daytime grab and continuous monitoring. Heavy siltation associated with habitat alterations and urban runoff occurred at seven (7) sites, but moderate siltation was evident at all except the upstream most site in Aptakisic Creek. Dissolved solids in the form of elevated chlorides and conductivity were prevalent in the most urbanized parts of the subwatersheds, but were comparatively low in the upper Indian Creek subwatershed. There were some slight differences between the 2016 and

2017 results, but not enough to alter the pervasive non-attainment of the General Use aquatic life biocriteria observed in both years. Flows measured at the gaging station on Buffalo Creek showed 2017 to have more frequent and higher flow events than in 2016 which showed in some of the overall lower quality habitat assessment results in 2017 compared to 2016.

Recreational Use Assessment

Levels of fecal bacteria in the form of *Escherichia coli* (*E. coli*) cfu²/100 mL were used to assess the status of recreation in and on the water. The IEPA General Use criteria are expressed as counts of fecal coliform bacteria, which were not measured here, hence the U.S. EPA national criteria for *E. coli* were used instead. The U.S. EPA *E. coli* criteria are expressed in terms of a 90day geometric mean and a statistical threshold value (STV) which is the 90th percentile of the data distribution that is not be exceeded by more than 10 percent of the samples. Given the sample size limitations, the mean values were used as an approximation of the 90-day geometric mean and maximum values as the STV. The U.S. EPA recommended 90-day geometric mean criteria value is 126 cfu/100 ml and the STV criteria value is 410 cfu/100 ml (U.S. EPA 2012).

There were numerous exceedances of the U.S. EPA recommended geometric mean and STV criteria (Table 2). Among the 22 sites sampled for *E. coli*, 19 had maximum values that exceeded the STV. However, only 11 sites had exceedances of the geometric mean. Both the mean and STV values were elevated in the Aptakisic Creek subwatershed and these occurred both upstream and downstream from the Lake Co. Des Plaines WWTP. Indian Creek had the next highest exceedances of both the geometric mean and STV. Only one site in the Buffalo Creek subwatershed exceed the geometric mean, but all sites had values exceeding the STV. The upstream most sites in Buffalo Creek and Kildeer Creek were the only instances of meeting both criteria, but exceedances occurred at the remaining downstream sites in Kildeer Creek. The two sites in Seavey Drainage Ditch met the geometric mean, but exceeded the maximum.

The results indicate substantial sources of fecal bacteria, possibly including failing septic system discharges in addition to general urban and suburban nonpoint sources. The 2018 Watershed Plan (LCSMC 2018) showed numerous sources of failing or potentially failing septic systems in Buffalo and Indian Creeks, but few if any in Aptakisic Creek. These were largely based on GIS and modeling estimates hence we suggest this be revisited for Aptakisic Creek. The comparatively lesser number of exceedances of the geometric mean compared to 91% of the sites exceeding the STV suggests wet weather sources.

² cfu = colony forming units

Table 2. E. coli values (cfu/100 ml) for samples collected in the Year 1 subwatersheds study area
during May-October 2017. Blue shaded bars are the actual values and red shaded
values exceed the recommended U.S. EPA (2012) 90-day geometric mean (126 cfu/100
mL) and maximum STV (410 cfu/100 mL) recreation use criteria.

Site ID	Basin	Strean	River	River Mile	Year	Samples	Minimum	Geometric M	ean	Max. STV
18-3	95	701	Aptakisic Creek	4.3	2017	4	1	10)4.4	1300
18-2	95	701	Aptakisic Creek	0.8	2017	10	79.4	29	96.6	1 <mark>550</mark>
18-1	95	701	Aptakisic Creek	0.5	2017	10	93.3	22	28.1	1120
18-5	95	712	Unnamed Trib. to Aptakisic Cr.	0.05	2017	2	156		3 <mark>79</mark>	921
17-5	95	703	Buffalo Creek	14	2017	2	42		19.4	58
17-3	95	703	Buffalo Creek	7.7	2017	10	1	-	74.8	1300
17-2	95	703	Buffalo Creek	6.1	2017	10	1	-	70.3	2420
17-1	95	703	Buffalo Creek	0.75	2017	10	1	12	24.7	19 <mark>90</mark>
17-4	95	713	Unnamed Trib. to Buffalo Cr.	0.68	2017	10	1	19	94.8	2420
15-11	95	705	Forest Lake Drain	0.83	2017	2	365	43	32.3	512
15-9	95	706	Indian Creek	10.83	2017	4	31.6	16	52.3	613
15-6	95	706	Indian Creek	9.83	2017	10	1	-	76.6	1050
15-5	95	706	Indian Creek	5.4	2017	10	1	13	39.5	1050
15-2	95	706	Indian Creek	2.41	2017	10	1	13	31.7	579
15-1	95	706	Indian Creek	0.17	2017	10	1	10)7.1	980
15-10	95	717	W. Branch Indian Creek	0.8	2017	1	219		219	219
15-12	95	707	Kildeer Creek	5.2	2017	2	18		20.8	24
15-7	95	707	Kildeer Creek	4.6	2017	10	52		192	2420
15-13	95	707	Kildeer Creek	2.21	2017	2	172	27	73.5	435
15-4	95	707	Kildeer Creek	0.17	2017	10	1	10)7.6	886
15-3	95	390	Seavey Drainage Ditch	3.66	2017	10	1	10)5.3	727
15-8	95	390	Seavey Drainage Ditch	0.45	2017	4	1	4	18.6	435

Biological and Water Quality Assessment of Upper Des Plaines River Subwatersheds: Year 1 Rotation 2017

STUDY AREA DESCRIPTION

Lake County is comprised of 53 individual communities and 18 townships with a total area of 1368 square miles of which a significant fraction are waterbodies comprised of lakes, wetlands, rivers, and streams in the Upper Des Plaines River basin. According to the 2010 U.S. Census the population of Lake Co. is 703,462 (272,957 in the Upper Des Plaines watershed) with a density of 1,572 people per square mile and 260,310 housing units making it the third most populated county in Illinois ranking behind adjacent Cook and nearby DuPage Counties. The Des Plaines River originates in Wisconsin near Racine in Kenosha Co. north of where it enters Illinois in Lake County. The Des Plaines flows due south for 110 miles joining the Kankakee River to form the Illinois River. The total watershed area is approximately 2110 square miles of which 1231 are in Illinois (Healy 1979). The watershed in Lake Co. is "trellised" meaning it is narrow in width relative to the length of the mainstem thus the tributaries are of comparatively shorter lengths with comparatively small drainage areas.

The Year 1 2017 study area included the Buffalo, Indian, and Aptakisic Creek subwatersheds and attendant tributaries within Lake Co., IL. The Buffalo Creek subwatershed includes two tributaries that feed Buffalo Creek, which flows southeast from the Buffalo Creek Reservoir, into the

Wheeling Drainage Ditch, and to the Upper Des Plaines River in Wheeling. The Indian Creek subwatershed includes Seavey Ditch, Kildeer Creek (South Branch Indian Creek), and several smaller tributaries which enter the Des Plaines River just south of Route 22 in Lincolnshire. The Aptakisic Creek subwatershed includes two channelized streams that join to form the main branch of Aptakisic Creek, which flows east through Buffalo Grove and Vernon Township to the Upper Des Plaines River. Together these subwatersheds comprise 34% of the Upper Des Plaines basin (Lake Co. SMC 2018). Indian Creek is the largest subwatershed (37.7 mi.²) in the 2017 study area, followed by Buffalo Creek (27.2 mi.²), and Aptakisic Creek (6.8 mi.²). Land use is mostly medium-large scale urban in the Aptakisic (60.5%) and Buffalo (50.2%) Creek subwatersheds and less so in Indian Creek (35.7%). By contrast forest preserve and parks comprise very low fractions of land use in the Aptakisic (0.04%), Buffalo (6.2%), and Indian (3.4%) Creek subwatersheds (Lake Co. SMC 2018).

General Landscape Setting

The 2017 Year 1 subwatersheds lie mostly within the Kettle Moraine subregion of the Southeastern Wisconsin Till Plains Level III ecoregion with lesser portions in the Valparaiso-Wheaton Morainal Complex subregion of the Central Corn Belt Plains Level III ecoregion (Table 3; Woods et al. 1995). The Kettle Moraine subregion occupies the majority of the study area to the west and northwest of the mainstem. It is characterized by poorly drained, hilly to hummocky morainal areas that include conspicuous glacial landforms, numerous lakes, and wetlands including bogs, fens, and marshes. Drainage networks are less integrated and more

Table 3. Level IV subregions of the 2016 Upper Des Plaines River watershed study area and
their key attributes (from Woods et al. 1995).

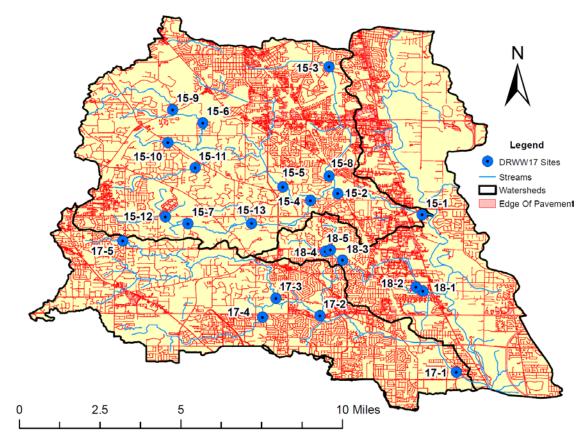
Level IV Subregion	Physiography	Geology	Soils	Potential Natural Vegetation	Land Use/Land Cover
Kettle Moraine (53b)	Glaciated, hummocky to hilly area with steeply sloping moraines, outwash plains, closed depressions, mounds, level areas, and many wetlands and natural lakes.	Wisconsinan-age glacial till, outwash gravels, and thin loess (<20"). Silurian & Ordovician dolomite, lime-stone, and shale bedrock.	Mostly Alfisols (Hapludalfs, Epiaqualfs); also, Mollisols (Argiudolls, Endoaquolls), Histosols.	Oak-hickory forest, oak savanna, & blue- stem prairie occur on moraines. Wet- lands (bogs, fens, seeps, sedge meadows, marshes) were common.	Forest, pasture- land, & wetland. Home sites common on moraines and lakes.
Valparaiso- Wheaton Morainal Complex (54f)	Glaciated, hilly, hummocky, rolling area containing moraines, kames, eskers, rolling till plains, outwash plains, kettle holes, and ravines. Small lakes and marshes are common.	Wisconsinan-age glacial till, Quarter- nary lake deposits, thin loess (<20") & alluvium. Ordovician & Silurian dolomite, limestone, & shale bedrock buried by glacial drift with outcrops along some streams.	Alfisols (Epiaqualfs, Hapludalfs), Mollisols (Endoaquolls, Argiudolls), Inceptisols (Eutrudepts).	A mosaic of oak– hickory forest & bluestem prairie. Dry prairies and dry upland forests on dry soils; mesic forests on poorly drained uplands. Floodplain forests in river bottoms.	Mostly growing urban/suburban development, but wooded areas, wetlands, and pastureland are common in preserves.

poorly developed than on the older till and outwash plains of adjacent Rock River Drift Plain subregion. Lakes are typically larger and more concentrated than to the south in the Valparaiso Morainal Complex subregion and much more common than in other neighboring subecoregions. Soils are largely derived from thick late-Wisconsinan glacial drift and thin loess deposits where they occur. Alfisols are common, but Mollisols and Histosols also occur. Overall, organic soils are more extensive than elsewhere in Illinois, and Mollisols are less common than in subregions to the west. In the early 1800s moraines were covered by savanna, prairie, and forest (oak-hickory) with depressions containing wetlands. Landscape alterations in the 1900s reduced the tracts of forest and nonforested wetlands replacing them with urban and suburban development. However, wooded areas, lakes, and wetlands are still common especially in the extensive forest preserves.

The Valparaiso-Wheaton Morainal Complex subregion is a hilly, hummocky to rolling area containing moraines, kames, eskers, and outwash plains with numerous small lakes and marshes. Soils are largely derived from thick, late-Wisconsinan glacial drift and thin loess deposits where they occur. Alfisols are common and Mollisols also occur, but are less common than in neighboring subregions. In the early 1800s prairie and forest (oak-hickory) dominated

the moraines with swamp white oak forests and marshes occurring in poorly drained areas. Prairie covered slightly more than half of this subregion. Subsequent fire suppression has reduced the number of prairie openings, thereby increasing forest density. Today, urban and suburban development is increasingly replacing rural land uses. However, wooded areas, lakes, and wetlands are still common especially in the County owned forest preserves. Land uses are varied and include residential (26.3%), public/private open space (19.4%), agricultural (12.2%), transportation (10.6%), forest/grassland (9.3%), water (7.0%), wetlands (5.4%), and the remainder comprised of six other land use types (Lake Co. Local Planning Committee 2012).

Major Point Sources


Significant point sources of pollution were inventoried as part of the 2016 Upper Des Plaines Bioassessment (MBI 2017) to understand the extent of their potential impact and for the intensive pollution survey monitoring design. The 2017 Year 1 study area includes one major discharge, the Lake Co. Dept. of Public Works (LCDPW) Des Plaines River WWTP (16.0 MGD) that discharges to the lower 0.5 miles of Aptakisic Creek. There are a total of 18 wastewater treatment plants (WWTP) in the Upper Des Plaines watershed within Lake Co. of which eight (8) are major discharges (Table 3) comprising a total of more than 80 million gallons per day (MGD; average annual flows) of treated wastewater. Of this total the majority is discharged by the North Shore Water Reclamation District Gurnee (NSWRD; 23.6 MGD), NSWRD Waukegan (22.0 MGD), and Lake Co. Dept. of Public Works (LCDPW) Des Plaines River WWTPs (16.0 MGD). All except one of these facilities have advanced treatment for oxygen demanding wastes (BOD), ammonia-N (NH₃-N), and suspended solids (TSS). The Mundelein WWTP is the only secondary treatment facility remaining. Two facilities have phosphorus removal and all except Mundelein monitor for N and P (MBI 2017).

Nonpoint Sources

Nonpoint sources in the 2017 study area include mostly urban sources, the latter of varying intensities ranging from light suburban to heavy urban and industrial land uses. These have been extensively classified and delineated by the Lake Co. SMC. Hydromodification of stream and river flows and habitat also occurs with the former being influenced by varying land uses and the latter mostly in the form of legacy channelization and riparian encroachment by urban and suburban development. An edge of pavement coverage illustrates the extent of urbanization in the 2017 study area and between the three subwatersheds (Figure 2).

Sampling Sites Selection and Locations

A Monitoring Strategy for the Des Plaines River Watershed was developed by the Monitoring Committee of the Des Plaines River Watershed Workgroup (DRWW 2018). The spatial allocation of sites was established by the DRWW for water sampling in 2015 and this was used as the core for the initial allocation of biological and habitat sites. While the initial baseline



Figure 2. The degree of urbanization in the 2017 Year 1 study area as reflected by the edge of pavement coverage for Lake Co. The 2017 sampling locations are included.

survey in 2016 included all 70 sites, a rotation through three subsets of the Upper Des Plaines River basin in Lake Co. was established in 2017.

Spatial Survey Design

A tiered design was adopted by DRWW that more frequently monitors water chemistry at sites with higher flow and land area while allowing for comprehensive coverage of the watershed (DRWW 2016). The initial design consisted of 44 sites located throughout the Upper Des Plaines watershed. MBI later developed a combined intensive pollution survey and geometric allocation of sites for the bioassessment plan. This consisted of geometric panels of drainage area and assigning sampling sites where these occurred throughout the Upper Des Plaines watershed. This resulted in the addition of 26 sites with most located in the upper reaches of small tributaries, with a few sites added to the Des Plaines mainstem to fill gaps left in the longitudinal continuum and to address two dam removal projects. The result was a total of 69 sites sampled in 2016 for biological assemblages and 49 for sediment chemistry. Each sampling site was assigned a unique DRWW numeric site code, a river mile, and UTM coordinates. A total of 23 sites in the Indian, Buffalo, and Aptakisic Creek subwatersheds were sampled in 2017 for biological, chemical, and physical parameters (Figure 3). New in 2017 was the addition of

Figure 3. Location of biological, chemical, and habitat sampling sites in the Year 1 Study area, 2017. Site codes correspond to sites listed in Appendix A-1.

Datasondes (continuous data for D.O., temperature, conductance, and pH) and benthic chlorophyll a samples at 14 sites (Appendix Table A-1).

METHODS

All methods followed Illinois EPA and DNR procedures, except as modified to meet the needs of the DRWW, but with the goal of providing comparable data to evaluate aquatic life and recreational use attainment. This includes fish, macroinvertebrates, habitat, bacteria, chemical parameters (water and sediment), continuous data for select parameters, and benthic chlorophyll a. Recreational use attainment was evaluated with *Escherichia coli* and using the U.S. EPA national criteria since none were available from Illinois EPA.

Chemical/Physical Water Quality - Methods

Water Sampling

The specific methods of data collection followed IEPA (2012a) and chemical laboratory analyses were provided by Suburban Labs. The chemical/physical parameter categories (demand, nutrients, metals, organics) and the frequency of sample collection are summarized in DRWW (2016, 2018). DRWW assigned tiers to the original 44 sampling sites as follows:

- Tier 1: 10 sites located on the mainstem Des Plaines River and Mill Creek that are sampled monthly for water May through September and in November and March (seven times per year) for all demand³, nutrient, and bacteria parameters; annually under low flow conditions for water column metals, water organics; and once every three years concurrent with the bioassessment for sediment metals and sediment organics.
- **Tier 2**: 10 sites located on the Des Plaines and tributary streams are monitored monthly from May through September and in November and March (seven times per year) for the majority of demand, nutrient, and bacteria parameters; annually under low flow conditions for water column metals, water organics; and once every three years concurrent with the bioassessment for sediment metals and sediment organics.
- **Tier 3**: 24 sites located on the Des Plaines and tributary streams within the watershed are monitored for water chemistry that will occur monthly from May through September and in November and March (seven times per year) for the majority of demand, nutrient, and bacteria parameters; and once every three years concurrent with the bioassessment for sediment metals and sediment organics.

The parameters analyzed and frequencies of collection varied by tier assignment. Twenty-five (25) sites were added for the 2016 biological and habitat assessment and consisted of small, headwater sites generally with catchments of less than 1-2 square miles. These were designated as Tier 4 sites in the revised monitoring strategy and they were not sampled for

³ Demand parameters include: chlorides, conductivity, pH, TOC, sulfate, total suspended solids, volatile suspended solids, dissolved oxygen, temperature, and turbidity.

water chemistry in 2016 or 2017 with the exception of field parameters collected by the fish and Datasonde crews.

Sediment Sampling

Surficial sediments were sampled for bulk chemical analysis at 16 locations following IEPA methods (IEPA 2011b). Samples were collected in October 2017 and were analyzed by Suburban Labs.

Nutrient Effect Assessment Procedure

A new methodology to assess the effect of nutrients was introduced in 2017. Modeled after the Stream Nutrient Assessment Procedure (SNAP) developed by Ohio EPA (2015b), it includes consideration of the width of the diel variation in D.O. and the biomass of chlorophyll a in benthic algae in addition to the concentration of total phosphorus and dissolved inorganic nitrogen (nitrates + nitrites). Additional parameters such as total suspend solids (TSS) and total Kjeldahl nitrogen (TKN) would also have been included, but were not collected at a sufficient number of sites. Datasondes were deployed for consecutive-day periods during times of low stream flow and elevated summer ambient temperatures (YSI 2012, 2017). Together these results were used to determine five degrees of nutrient enrichment (none, low, moderate, high, and severe). Since this is the first attempt to use this methodology in the Upper Des Plaines basin the assessments of the degree of nutrient enrichment should be regarded as preliminary.

Biological Assemblage Sampling

Biological assemblages in the 2017 Year 1 study area included fish and macroinvertebrates at 23 instream locations. Biological and habitat sampling adhered to a summer-early fall index period of June 16-October 15 for fish and July 1-September 30 for macroinvertebrates. For fish all sites were sampled once and macroinvertebrates once, the latter with a 10% resample. A habitat evaluation was performed at all fish sites using the QHEI (Ohio EPA 2006) and a site description accompanied the Illinois EPA multihabitat macroinvertebrate sample. All sampling occurred during periods of summer-fall base flows – periods of higher flows and elevated runoff were avoided.

Fish Assemblage Methods

Fish were collected once at each site with pulsed D.C. electrofishing units including a Wisconsin AbP-3 battery-powered back pack or T&J 1736 DCV units. Deference was given to the most effective method given the prevailing site and water characteristics. The upper boundary for using the battery-powered back pack electrofishing unit was two times the depth and five times the width of the net ring (anode). Wider and deeper sites were sampled with the T&J 1736 DCV generator powered unit as either a bank set longline or floated on a roller barge. All sites were sampled in an upstream direction. The primary net ring served as the anode and a woven steel cable cathode trailed from the back pack unit, the longline, or the roller barge. A long handled dip net was used to assist in the capture of stunned fish. A two or three-person crew consisting of a fish crew leader and one or two field technicians conducted the sampling under summer-

fall base flow conditions. Sampling effort was standardized by distance and included a 150-200 meter long reach for all wadeable sites.

Captured fish were placed in a live well, bucket, or live net for later processing. Water was regularly replaced and/or aerated to maintain adequate oxygen levels in the water and to minimize mortality. Samples from each site were processed by enumerating and recording weights by species and by life stage (young-of-the-year, juvenile, and adult) on a field sheet. The incidence of external anomalies was recorded following procedures outlined by Ohio EPA (1996, 2015a) and refinements made by Sanders et al. (1999). Fish were released back into the water after they were identified to species, examined for external anomalies, and weighed either individually or in batches. Larval fish were not included in a sample and fish measuring less than 15-20 mm in length were generally excluded as a matter of practice (excepting adults of small species). All sites were marked with GPS coordinates (beginning, middle, and end of a sampling reach) and site data was recorded on a standard field form.

While the majority of captured fish were identified to species in the field, any uncertainty about field identification required vouchering for laboratory identification. Voucher specimens were preserved in borax buffered 10% formalin solution and labeled by date, stream, and geographic identifier (e.g., river mile and site number). Regional ichthyology keys were used including the Fishes of Illinois (Smith 1979) and updates available through the Illinois Natural History Survey (INHS). Scientific nomenclature followed Page et al. (2012). Vouchers were deposited at The Ohio State University Museum of Biodiversity (OSUMB) in Columbus, OH. The data were used to calculate the Illinois Fish Index of Biotic Integrity (fIBI; Smogor 2000, 2005) as the primary assessment of fish assemblage quality.

Macroinvertebrate Methods

Macroinvertebrate methods followed the Illinois EPA multi-habitat method (IEPA 2011c,d) at all sites (Appendix Table A-1). The IEPA multi-habitat method involves the selection of a sampling reach that has instream and riparian habitat conditions typical of the assessment reach. Sampling reach requirements included flow conditions that approximate typical summer base flows, the absence of highly influential tributary streams, the presence of one riffle/pool sequence or analog (i.e., run/bend meander or alternate point-bar sequence), if present, and a length of at least 300 feet. The collection of macroinvertebrates was accomplished with a dip net in all bottom-zone and bank-zone habitat types that occurred within a sampling site. Water conditions must allow a sampler to apply the 11-transect habitat-sampling method or to estimate with reasonable accuracy via visual or tactile cues the amount of each of several bottom-zone and bank-zone habitat types. All sites were marked with GPS coordinates (beginning and end of a sampling reach) and site data was recorded on a standard field form.

Multi-habitat macroinvertebrate samples were field preserved in 10% formalin. Upon delivery to the MBI lab in Hilliard, OH the preserved samples were transferred to 70% ethyl alcohol. Laboratory procedures followed the IEPA (2011e) methodology which requires the production of a 300-organism subsample from a gridded tray following a scan and pre-pick of large and/or rare taxa. Taxonomic resolution was at the lowest practicable resolution for the common

macroinvertebrate assemblage groups such as mayflies, stoneflies, caddisflies, midges, and crustaceans, which goes beyond the genus level requirement of IEPA (2011g). However, calculation of the Macroinvertebrate IBI (mIBI) adhered to the IEPA methods by using genera as the benchmark level of taxonomic resolution for mIBI scoring.

Habitat Assessment

The QHEI (Rankin 1989, 1995; Ohio EPA 2006) was employed as the principal aquatic habitat assessment methodology at each site. The protocol was accomplished as part of the fish assemblage method by the fish crew leader who is trained and experienced in using the QHEI. The QHEI measures six categories of habitat that are important to the aquatic biota with a scoring range of 0-100. QHEI scores of 60 are generally regarded as sufficient to support the General Use for aquatic life. Scores below 45 indicate substantial deficiencies in habitat that can preclude attainment of the General Use. A QHEI matrix (Rankin 1995) showing the occurrence of good and modified attributes was also examined to evaluate the overall capacity of the stream habitat to support the General Use at each site.

Data Management

All data was managed by MBI in internal databases that permit ready access and analysis. Biological and habitat data is stored in a routine based on the Ohio ECOS format that MBI uses for all biological data management tasks. Biological data analysis included the calculation of Illinois fish and macroinvertebrate IBIs for determining General Use aquatic life status and the accompanying data attributes to enhance the diagnosis of impairments. Habitat data was analyzed using the QHEI and also via a QHEI attributes matrix to aid in assessing habitat related impairments. Summaries of species/taxa relative abundance and QHEI metrics at each site and by sampling date are provided in Appendices B-D.

Determining Use Attainability

Illinois EPA offers a single aquatic life use designation that applies to all rivers and streams through the General Use provision of the Illinois WQS. This is the presumed use applicable to all rivers and streams in Illinois which includes the 2017 study area. An assessment of aquatic life use attainability is therefore not a routine outcome of a biological and water quality assessment and was not performed herein. However, the data collected is adequate to determine if habitat is a limiting factor for any instances of non-support.

Determining Use Attainment

The determination of the attainment status of the Illinois General Use for aquatic life generally followed the guidance in the 2018 IEPA Integrated Report (IEPA 2018) relying primarily on the biological results and attainment of the fIBI and mIBI thresholds expressed as fully supporting, partially supporting, non-supporting fair, and non-supporting poor, with the most limiting result

of either the fish or macroinvertebrates determining the assignment of fair or poor. The addition of a partial support category goes beyond the current IEPA structure and was done to highlight where one assemblage attained their respective fIBI or mIBI biocriterion.

Determining Causal Associations

Using the results, conclusions, and recommendations of this assessment requires an understanding of the methodology used to determine biological status and assigning associated causes and sources of impairment utilizing the accompanying chemical/physical data and source information (e.g., point source loadings, land use).

Causal Diagnosis

Describing the causes and sources associated with observed biological impairments relies on an interpretation of multiple lines of evidence including water chemistry data, sediment chemistry data, habitat data, effluent data, land use data, and biological response signatures (Yoder and Rankin 1995; Yoder and DeShon 2003). Thus the assignment of associated causes and sources of biological impairment in this report represents the association of impairments (based on response indicators) with stressor and exposure indicators using linkages to the bioassessment data based on previous experiences with analogous situations and impact types. This was done by relating exceedances of chemical thresholds such as chronic and acute water quality criteria and relevant biological effects thresholds for water and sediment chemistry associated with biological impairments to determine categorical and/or parameter specific causes. The reliability of the identification of associated causes and sources is increased where other such prior associations have been observed. This process relies on multiple lines of evidence concerning the biological response which is the ultimate measure of success in water quality management. Exceedance thresholds for chemical parameters used in the causal analyses are provided in Table 4 and as used in the tabular and graphical presentation of the chemical water and sediment results.

Hierarchy of Water Indicators

A carefully conceived ambient monitoring approach, using cost-effective indicators comprised of ecological, chemical, and toxicological measures, can ensure that all relevant pollution sources are judged objectively on the basis of environmental results. A tiered approach that links the results of administrative actions with true environmental measures was employed in our analyses. This integrated approach is outlined in Figure 4 and includes a hierarchical continuum from administrative to true environmental indicators. The six "levels" of indicators include:

- Level 1 actions taken by regulatory agencies (permitting, enforcement, grants);
- Level 2 responses by the regulated entity (treatment works, pollution prevention);
- Level 3 changes in discharged quantities (pollutant loadings);
- Level 4 changes in ambient conditions (chemical/physical water quality, habitat);

- Level 5 changes in uptake and/or assimilation (tissue contamination, biomarkers, assimilative capacity); and,
- Level 6 changes in health, ecology, or other effects (ecological condition, human and wildlife health).

Completing the Cycle of WQ Management: Assessing and Guiding Management Actions with Integrated Environmental Assessment

Indicator Levels

- 1: Management actions
- 2: Response to management
- 3: Stressor abatement
- 4: Ambient conditions
- 5: Assimilation and uptake
- 6: Biological response

Administrative Indicators [permits, plans, grants, enforcement, abatements]

Stressor Indicators [pollutant loadings, land use practices]

Exposure Indicators [pollutant levels, habitat quality, ecosystem process, fate & transport]

Response Indicators [biological metrics, multimetric indices]

Ecological "Health" Endpoint

Figure 4. The hierarchy of administrative and environmental indicators which can be used to support monitoring and assessment, reporting, and an evaluation of the effectiveness of pollution controls on a receiving stream. This is patterned after a model developed by U.S. EPA (1995a,b) and enhanced by Karr and Yoder (2004).

In this process the results of administrative activities (levels 1 and 2) are linked to water quality (levels 3, 4, and 5) which translates to a response (level 6). An example is the aggregate effect of billions of dollars spent on water pollution control in the U.S. since the early 1970s that have been determined with quantifiable measures of environmental condition. In this case the hierarchy was applied to a specific stream reach that is impacted by multiple point and nonpoint sources. The administrative steps taken by Illinois EPA to issue NPDES permits (Level 1) and the steps taken by the permit holders (Level 2) are easily described and quantified. Quantifying changes in the loadings of pollutants (Level 3) can be affected by the quality and completeness of the effluent monitoring which includes the capture of stressors that actually affect the receiving streams. Likewise, documenting changes in ambient conditions (Level 4)

can also be affected by the quality and completeness of the chemical/physical monitoring that not only includes the parameters but also the spatial design in relation to sources of pollution. This in turn informs about how pollution sources tax the assimilative capacity (Level 5) of a receiving stream. The end result of all the above is portrayed by the response in the biological indicators which is expressed as attainment or non-attainment of the Illinois General Use aquatic life thresholds for the fish and macroinvertebrate IBIs (IEPA 2016). Symptoms expressed by the biota beyond the index scores can be useful in aiding the causal diagnosis as a feedback loop in the hierarchy of indicators process.

Superimposed on this hierarchy is the concept of stressor, exposure, and response indicators.

- *Stressor* indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications.
- *Exposure* indicators are those which measure the effects of stressors and can include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to a stressor or bioaccumulative agent.
- *Response* indicators are generally composite measures of the cumulative effects of stress and exposure and include the more direct measures of community and population response that are represented here by the biological indices which comprise the Illinois EPA biological endpoints.

This classification of indicators represents the essential technical elements for the pollution survey design that was employed in the Upper Des Plaines bioassessments by using each indicator *within* its most appropriate role which are most appropriate for each (Yoder and Rankin 1998).

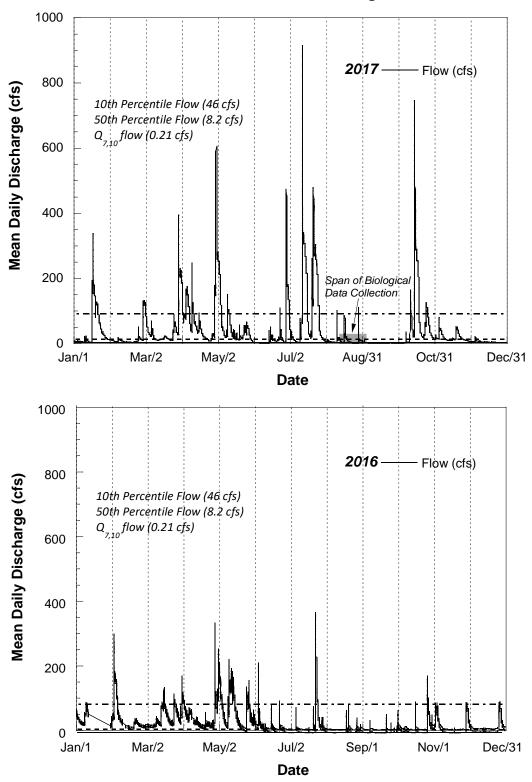
Causal Associations

Describing the causes and sources associated with biological impairments in the study area involved the interpretation of multiple lines of evidence that included water chemistry, sediment chemistry, habitat, and effluent data, a general knowledge about upstream land uses, and biological response signatures within the biological data itself. The assignment of causes and sources of biological impairment result from the association of the impairment with exceedances of water quality criteria or other response-based thresholds and the proximity to sources of pollution.

RESULTS – CHEMICAL/PHYSICAL WATER QUALITY

Chemical/physical water quality in the 2017 Year 1 study area was characterized by grab sample data collected from the water column six times at each Tier 1-3 site during summer-fall base flows and by hand held meter only at Tier 4 sites. Sediment chemistry was determined from samples collected at 17 Tier 1-3 sites in October 2017. Commonly detected chemical parameters were compared either to the criteria in the Illinois WQS, IEPA non-standard benchmarks, reference benchmarks, and/or biologically derived thresholds (Table 4). As such, the chemical/physical data herein serves as an indicator of the degree of exposure and stress in support of using the biological data to assess the attainment of designated aquatic life uses and to assist in assigning associated causes and sources. Parameter groupings included field, demand, ionic strength, nutrients, heavy metals, and organic compounds. Bacteria data were collected by grab samples and were used primarily to determine the status of recreational uses in accordance with U.S. EPA National Water Quality Criteria (U.S. EPA 2012).

Flow Regime


The flow regime in the 2017 study area during the period January 1 – December 31, 2016 and 2017 is depicted in Figure 5 based on the gauge operated by the U.S. Geological Survey on Buffalo Creek near Wheeling, IL. The flow regime was highly variable in both years, but summer-fall flows were generally at or below the 50^{th} percentile flow of 8.2 cubic feet/second (cfs) and approached the $Q_{7,10}$ flow of 0.21 cfs on most days. The historical record shows numerous days of zero flow. Peak flows occurred in the winter, spring, early summer, and fall months of 2016 and 2017 following significant precipitation events, but peak flows were higher in 2017 resulting in runoff events of increased quantity and duration. Overall Buffalo Creek exhibited flashy flows similar to other urbanized northeastern Illinois streams.

Water Column Chemistry

The water column chemistry results were analyzed for spatial patterns in each of the three subwatersheds by drainage area and as a frequency plot for the entirety of each subwatershed. Exceedances of Illinois WQS, Illinois non-standard benchmarks, regional reference benchmarks, and biological effect thresholds were assessed. Exceedances of these benchmarks and thresholds are indicated on the plots and tables of the 2017 chemical results.

Exceedances of Biological Effect and Reference Thresholds

The principal purpose of chemical data in a bioassessment is to provide data that supports the interpretation and the assignment of associated causes of biological impairments. Chemical exceedance and biological effect thresholds are essential to that process and included the Illinois water quality criteria, biological effect thresholds derived from regional analyses of stress/response relationships, regional reference benchmarks, and national and regional biological effects compendia. Some of these consist of correlations between concentrations of

Buffalo Creek nr. Wheeling, IL

Figure 5. Daily flow measured at the USGS gage on Buffalo Creek (USGS 05528500) near Gurnee, IL during calendar years 2017 (upper) and 2016 (lower). The dashed lines are the 10th and 50th percentile flows; the seven-day, ten year critical low flow is indicated by the solid line and the span of biological data collection is indicated by a shaded bar along the x-axis.

substances that correspond to biological quality gradients across significant geographical areas while others are toxicological endpoints derived from laboratory studies. Two recent regional studies that were used include correlative effects levels of different chemicals by the DuPage River Salt Creek Working Group (DRSCWG; Miltner et al. 2010) in northeastern Illinois and the Metropolitan Sewer District of Greater Cincinnati (MSDGC; MBI 2015) in southwest Ohio. NOAA Screening Quick Reference Tables (SQRT; Buchman 2008) were also used especially for chemicals that are not included in the Illinois WQS. A compendium of biological and toxicological effect thresholds are listed in Table 4 and are cited as they are used. Sediment chemical results were evaluated against threshold and probable effect levels (TEL and PEL) established by MacDonald et al. (2000). Exceedances of these values were used to support the assignment of causes of biological impairment provided that there was a logical linkage of the chemical exceedance with the biological impairment. The chemical results are also displayed graphically for selected parameters and in tables of exceedances of IEPA water quality criteria and biological effect thresholds for select parameter groups for both water column and sediment chemistry results. With the exception of D.O. there were no other exceedances of parameters that have IEPA water quality criteria.

Demand and Nutrient Related Parameters

Demand and nutrient related parameters consist of those related to the discharges of treated and untreated sewage, organic enrichment from point and nonpoint sources, nutrient parameters and their effects, and physical parameters such as total suspended solids and temperature.

Dissolved Oxygen (D.O.)

Exceedances of dissolved oxygen (D.O.) were assessed with grab sample data and short-term Datasonde deployments. Grab D.O. samples collected during daylight revealed several exceedances of the IEPA August-February minimum of 3.5 mg/L and March-July minimum of 5.0 mg/L (Table 5). These were the most pronounced at 3 sites in Buffalo Creek and single sites in Indian and Kildeer Creeks where minimum values of <2 mg/L were measured in four samples. Lesser exceedances of the minimum criteria occurred in Buffalo, Indian, and Aptakisic Creeks. Extremely high daytime values occurred at several sites in Buffalo and Indian Creeks and using the width between minimum and maximum values as an indication of the possible magnitude of a diel swing, several had wide swings indicative of excessive algal activity.

Short-term deployments of Datasonde continuous recorders likewise recorded exceedances of parts of the IEPA D.O. criteria and also revealed excessive diel swings (Figure 6). All of the deployments were made after August 1 hence the minimum was evaluated against the 3.5 mg/L criterion. There was insufficient data to evaluate the weekly and rolling average aspects of the IEPA D.O. criteria, but the median was compared to the weekly average of 6.0 mg/L for screening purposes. Exceedances of the 3.5 mg/L minimum criterion occurred at three sites and were the most pronounced in Kildeer Creek (15-7) with minimum values close to that obtained by grab sampling. This was also one of four sites with median values that exceeded

Table 4. Chemical thresholds consisting of Illinois water quality criteria, biological effects thresholds, and non-effect reference
benchmarks used to support the assignment of causes to observed biological impairments in the 2017 study area. Only
chemical parameters that were detected in water samples are included.

1	Water Quality Criteria ²		Effect Thresholds ³				Non-effect Benchmarks ⁴	
Parameter ¹	IL Chronic	IL Acute	Ohio EPA⁵	SW Ohio ⁶	NOAA SQRT ⁷	Other	Regional Reference ⁸	IL Non- Standard ⁹
			Ľ	Demand Group				
BODs	NA ¹⁰	NA		2.48 mg/L [HW Streams] 2.96 mg/L [WD Streams] 2.60 mg/L [BT Rivers]			2.00 mg/L [HW Streams]	
Dissolved Oxygen (D.O.)	5.5./6.0 mg/L [7-day rolling avg.]	3.5/5.0 mg/L [minimum]	7.2 mg/L [HW Streams]	5.32 mg/L [All Streams]			6.6 mg/L [HW Streams]	
Suspended Solids (TSS)	NA	NA	16.0 mg/L [HW Streams]	65.7 mg/L [HW Streams] 70.8 mg/L [WD Streams] 74.3 mg/L [BT Rivers]			28.0 mg/L [HW Streams]	
Nutrients Group								
Ammonia-N (NH₃-N)	1.24 mg/L [рН 8.0/25°C]	8.40 mg/L [pH 8.0/25°C]	0.05 mg/L [HW Streams]	0.31 mg/L [HW Streams]		0.15 mg/L [DRSCW IPS ¹¹]	0.025 mg/L [HW Streams]	
Total Kjeldahl Nitrogen (TKN)	NA	NA	0.50 mg/L [HW Streams]	0.51 mg/L [HW Streams]		1.00 mg/L [DRSCW IPS ¹¹]	0.70 mg/L	

	Water Quality Criteria ²		Effect Thresholds ³				Non-effect Benchmarks ⁴	
Parameter ¹	IL Chronic	IL Acute	Ohio EPA⁵	SW Ohio ⁶	NOAA SQRT ⁷	Other	Regional Reference ⁸	IL Non- Standard ⁹
				0.58 mg/L [WD Streams] 1.05 mg/L [BT Rivers]				
Phosphorus	NA	NA	0.216 mg/L [HW Streams]	0.080 mg/L [HW Streams] 0.010 mg/L [WD Streams] 0.17 mg/L [BT Rivers]			0.072 mg/L	0.610 mg/L
Nitrate-N (NO₃-N)	NA	NA	0.90 mg/L [HW Streams]	0.96 mg/L [HW Streams] 1.38 mg/L [WD Streams] 1.68 mg/L [BT Rivers]			1.87 mg/L [HW Streams] 1.80 mg/L [EPA Ecoregion 54]	7.80 mg/L
			Ioni	c Strength Grou	ıp			
Chlorides	NA	500 mg/L;	46.0 mg/L [HW Streams]	52.6 mg/L [HW Streams] 59.1 mg/L [WD Streams] 68.4 mg/L [BT Rivers]		112 (fish); 141 (macro.) mg/L [DRSCW IPS ¹²]	35.0 mg/L [HW Streams] 31 mg/L (WD Streams) 55 mg/L [BT Rivers]	
Conductance, Specific	NA	NA	966 μS/cm [HW Streams] 861 μS/cm [WD Streams] 770 μS/cm [BT Rivers]	703 μS/cm [HW Streams] 660 μS/cm [WD Streams] 730 μS/cm [BT Rivers]		300 μS/cm [EPA draft ¹³]	751 μS/cm [HW Streams]	

	Water Qual	ity Criteria ²		Effect Th	resholds ³		Non-effect B	enchmarks ⁴
Parameter ¹	IL Chronic	IL Acute	Ohio EPA⁵	SW Ohio ⁶	NOAA SQRT ⁷	Other	Regional Reference ⁸	IL Non- Standard ⁹
Dissolved Solids (TDS)	NA	1500 mg/L [Dec. 1-Apr. 30; expires 2018]		364 mg/L [HW Streams] 384 mg/L [WD Streams] 395 mg/L [BT Rivers]			296 mg/L [SW Ohio HW]	
Sulfate	1809 mg/L		334 mg/L [HW Streams]	119 mg/L [HW Streams]			118.8 mg/L [HW Streams] 120 mg/L [WD Streams] 115 mg/L [BT Rivers]	
			٨	Netals Group ¹⁴				
Arsenic (As)	0.190 mg/L	0.360 mg/L	0.002 mg/L [HW Streams]		0.190 mg/L [Chronic]	See SQRT	0.001 mg/L [HW Streams]	
Copper (Cu)	0.022 mg/L	0.036 mg/L	0.010 mg/L [HW Streams]	5.9 μg/L [HW Streams] 8.9 μg/L [WD Streams] 10.4 μg/L [BT Rivers]	0.009 mg/L[C] 0.130 mg/L[A]	See SQRT	5.0 μg/L [HW Streams] 5.0 μg/L [WD Streams] 5.0 μg/L [BT Rivers]	
Lead (Pb)	0.051 mg/L	0.245 mg/L	0.002 mg/L [HW Streams]	2.7 μg/L [HW Streams] 17.4 μg/L [WD Streams] 26.8 μg/L [BT Rivers]	0.0025 mg/L[C] 0.065 mg/L[A]	See SQRT	2.5 μg/L [HW Streams] 2.5 μg/L [WD Streams] 3.0 μg/L [BT Rivers]	

	Water Qual	ity Criteria ²		Effect Th	aresholds ³		Non-effect B	enchmarks ⁴
Parameter ¹	IL Chronic	IL Acute	Ohio EPA⁵	SW Ohio ⁶	NOAA SQRT ⁷	Other	Regional Reference ⁸	IL Non- Standard ⁹
Manganese (Mn)	3.52 mg/L	8.15 mg/L	0.942 mg/L [HW Streams]	98 μg/L [HW Streams] 347 μg/L [WD Streams] 472 μg/L [BT Rivers]	0.080 mg/L[C] 2.300 mg/L[A]	See SQRT	0.185 mg/L [HW Streams]	
Zinc (Zn)	0.073 mg/L	0.273 mg/L	0.010 mg/L [HW Streams]	16.4 μg/L [HW Streams] 39.3 μg/L [WD Streams] 60.8 μg/L [BT Rivers]	0.120 mg/L [Chronic]	See SQRT	15 μg/L [HW Streams] 15 μg/L [WD Streams] 20 μg/L [BT Rivers]	

¹ All parameter values as total unless specific otherwise.

⁷ NOAA Screening Quick Reference Tables (SQRT; NOAA 2008) – hardness dependent parameters at 100 mg/L hardness; with EPA EcoUpdate Ecotox Thresholds EPA/F-95-038.

¹⁰ NA – not applicable, not included in IL WQS.

¹³ U.S. EPA field-based threshold for Central Appalachian streams in A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams (U.S. EPA 2011)

² Illinois water quality criteria (Illinois Administrative Code Part 302) - http://www.epa.illinois.gov/topics/water-quality/standards/derived-criteria/index.

³ Field-based thresholds using fish and macroinvertebrate assemblage endpoints;

⁴ Values represent analyses of large scale ambient chemical databases with statistical approaches.

⁵ Biocriteria derived threshold values (2 Interquartile Ranges [2IQR] above median) in Appendices to Association Between Nutrients and the Aquatic Biota of Ohio River and Streams (Ohio EPA 1999).

⁶ Biological assemblage effect thresholds derived for SW Ohio in Integrated Prioritization System (IPS) Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio (MBI 2015).

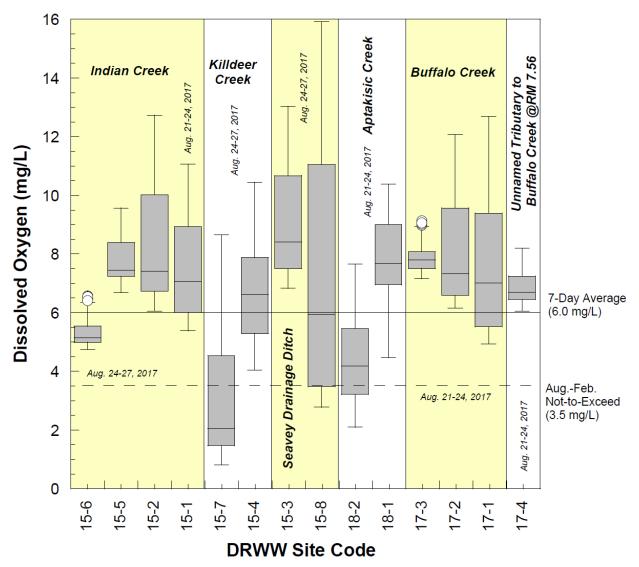
⁸ Ohio regional reference values (2 Interquartile Ranges [2IQR] above median) in *Appendices to Association Between Nutrients and the Aquatic Biota of Ohio River and Streams* (Ohio EPA 1999) unless otherwise specified.

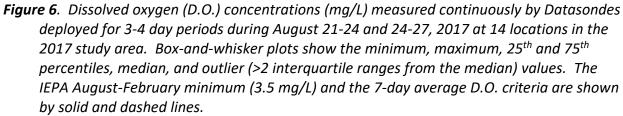
⁹ Values are 1 and 2 standard deviations (SD) above the mean of all values measured statewide.

¹¹ DRSCW IPS – DuPage River Salt Creek Workgroup integrated Prioritization System derived threshold.

¹² DRSCW IPS – DuPage River Salt Creek Workgroup integrated Prioritization System derived threshold.

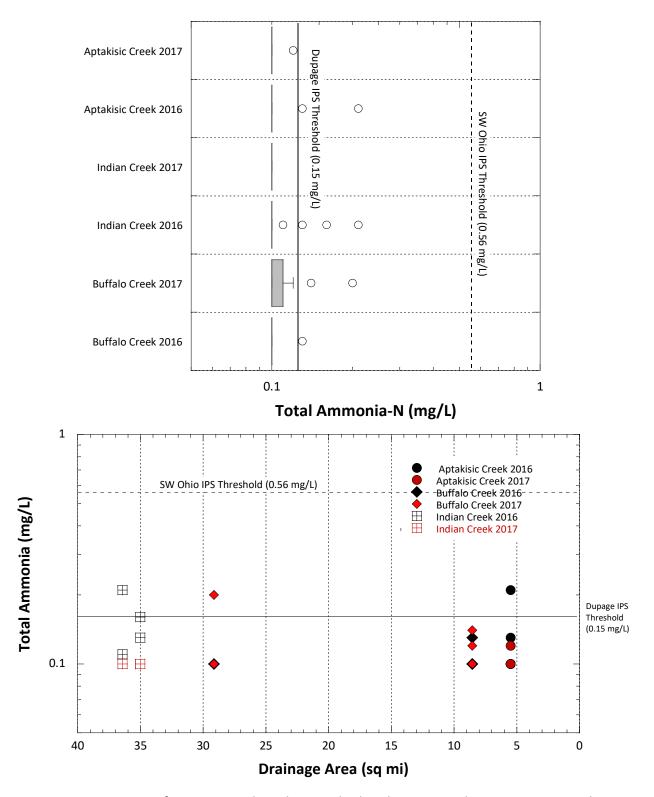
¹⁴ Hardness dependent metals shown at 300 mg/L total hardness – see IAC Part 302 for formulae.

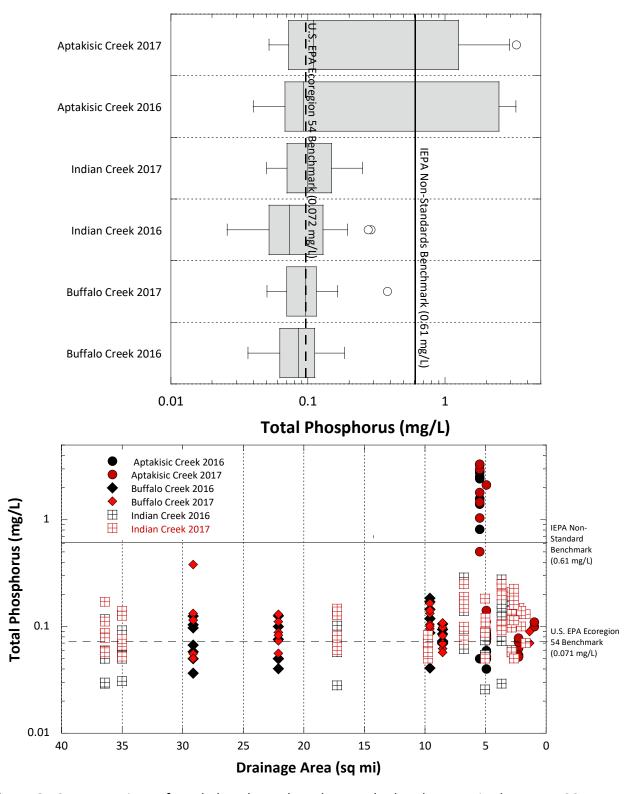

Table 5. Dissolved oxygen (D.O.) concentrations (mg/L) based on grab samples collected at 22
locations in the Year 1 2017 study area showing the mean, minimum, maximum, and
width between the minimum and maximum values.


		River	Drain. Area	Mean D.O.	Min. D.O.	Max. D.O.		D.O.
Site ID	Name	Mile	(mi. ²)	(mg/L)	(mg/L)	(mg/L)	Samples	"Swing"
18-3	Aptakisic Creek	4.3	2.3	8.6	4.2	12.9	6	8.7
18-2	Aptakisic Creek	0.8	4.9	6.7	3.4	12.4	6	9.0
18-1	Aptakisic Creek	0.5	5.5	8.6	6.0	11.8	6	5.8
18-5	Unnamed Trib. to Aptakisic Cr.	0.05	1.0	4.0	3.5	4.4	2	0.9
17-5	Buffalo Creek	14.0	1.4	5.2	4.0	6.4	2	2.4
17-3	Buffalo Creek	7.7	9.6	8.4	6.6	11.7	6	5.0
17-2	Buffalo Creek	6.1	22.1	7.6	1.1	11.8	6	10.6
17-1	Buffalo Creek	0.75	29.1	8.7	1.8	13.0	6	11.2
17-4	Unnamed Trib. to Buffalo Cr.	0.68	8.6	6.6	3.2	11.9	6	8.7
15-9	Indian Creek	10.8	2.7	7.1	1.8	13.2	6	11.5
15-6	Indian Creek	9.8	3.7	6.3	4.2	11.6	6	7.4
15-5	Indian Creek	5.4	17.3	6.9	4.8	11.3	6	6.5
15-2	Indian Creek	2.4	35.0	7.6	4.8	12.0	6	7.3
15-1	Indian Creek	0.17	36.4	9.1	6.1	12.9	6	6.8
15-12	Kildeer Creek	5.2	2.1	8.9	7.9	9.8	2	1.9
15-7	Kildeer Creek	4.6	2.9	7.4	1.9	12.2	6	10.3
15-13	Kildeer Creek	2.2	5.0	6.7	5.4	8.0	2	2.6
15-4	Kildeer Creek	0.17	6.8	6.9	4.7	12.1	6	7.4
15-11	Forest Lake Drain	0.8	1.7	6.9	6.5	7.3	2	0.8
15-10	W. Branch Indian Creek	0.8	2.2	6.2	5.4	7.0	2	1.6
15-3	Seavey Drainage Ditch	3.7	5.1	8.9	5.8	13.2	6	7.4
15-8	Seavey Drainage Ditch	0.45	9.8	9.0	5.5	13.1	6	7.7
-	Exceedance of 3.5 mg/L minimum (Aug	Feb.).						
	Exceedance of the 5 mg/L minimum (Ma	rJul.).						
	Min. to max. "swing" >6.5 mg/L).							

the Illinois minimums in the continuous results. The lowest minimum and median D.O. values that exceeded the IEPA D.O. criteria were likely due to nonpoint source impacts and the combination of organic sediments and low flows that exacerbated the biochemical oxygen demand. Some of the sites are also affected by organic wastes from failing septic systems and some corresponded to elevated levels of *E. coli* used here as an indication of organic wastes in addition to the customary recreational risk. However, it is the excessive diel swings that were the most prevalent in the D.O. results which coupled with the very low minimums that represents a significant stressor for aquatic life in all three subwatersheds. Determining the diverse sources of this impairment should be a priority for future restoration.

Ammonia-Nitrogen (N)


Levels of ammonia-N were either below or just above the mean detection level (MDL) with no values that would suggest either chronic or acutely toxic effects to aquatic life (Figure 7). Detectable values in 2017 were less frequent than in 2016 presumably due to the higher flows in 2017. In terms of effect thresholds all values were below the SW Ohio threshold of 0.56 mg/L and only a few results exceeded the DRSCW IPS threshold of 0.15 mg/L. There were no outlier values measured downstream of the Lake Co. Des Plaines River WWTP in Aptakisic Creek based on grab samples collected at RM 0.5 (18-1).



Total Phosphorus

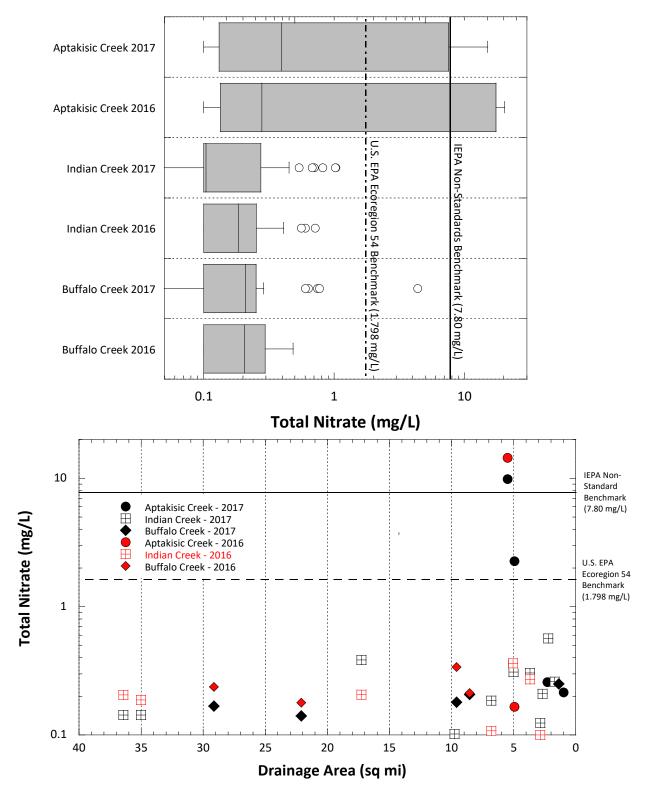
Total phosphorus levels varied widely in the 2017 study area with median values in 2016 and 2017 close to or below the U.S. EPA Ecoregion 54 reference value of 0.07 mg/L to peak values of 0.15-0.40 mg/L at all sites except Aptakisic Creek with a slight increase with stream size (Figure 8). Total P values of 2-3 mg/L were measured downstream from the Lake Co. Des Plaines River WWTP an obvious indication of enrichment by that point source (Figure 8, lower panel). The role of total P and other indicators as a contributor to overall nutrient enrichment effects was considered as part of the modified SNAP procedure (Ohio EPA 2015b).

Figure 7. Concentrations of ammonia-N by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent effect thresholds correlated with impaired biota in the DuPage River-Salt Creek IPS study (0.15 mg/L) and the SW Ohio IPS study (0.56 mg/L).

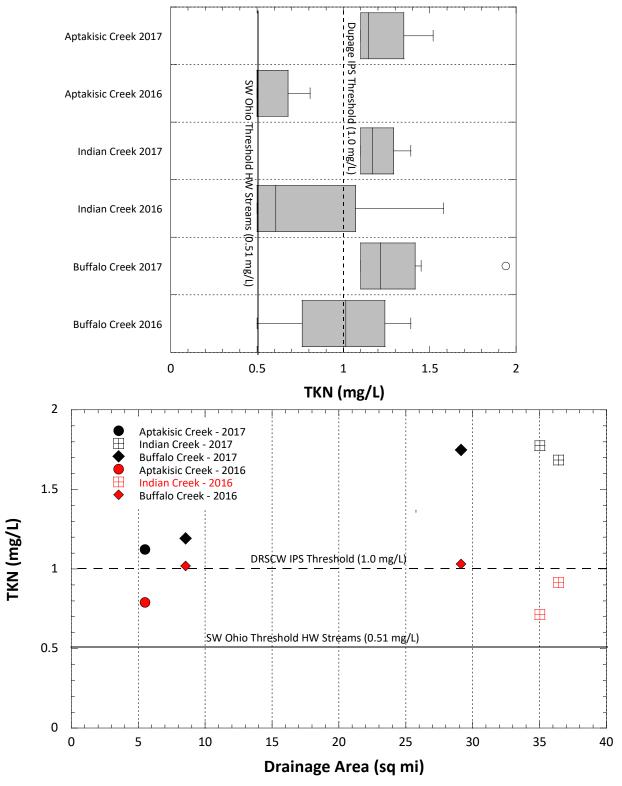
Figure 8. Concentrations of total phosphorus by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent regional reference and IEPA non-standard (not effect based) thresholds.

Total Nitrates (NO₃-N)

Total nitrates showed a similar pattern to total P being lowest at all sites except the Aptakisic Creek site immediately downstream from the Lake Co. Des Plaines River WWTP and with a gradual increase with stream size. Concentrations mostly ranged from 0.2-0.4 mg/L, but were well in excess of the U.S. EPA Regional Reference benchmark of 1.8 mg/L and the much higher IEPA non-standard benchmark of 7.8 mg/L at the downstream most Aptakisic Creek site, a reflection of the nitrification treatment process at the Lake Co. Des Plaines River WWTP and an obvious indication of enrichment by that point source (Figure 9, lower panel). The role of total nitrate-N and other indicators as a contributor to overall nutrient enrichment effects was considered as part of the modified SNAP procedure (Ohio EPA 2015b).


Total Kjeldahl Nitrogen (TKN)

Total organic nitrogen as measured by Total Kjeldahl Nitrogen (TKN), an indicator of the living or recently dead fraction of sestonic algae, can be an indicator of nutrient enrichment. While TKN is not a direct effect parameter, it is indicative of the effects of organic enrichment by nitrogenous biomass. All TKN values in 2016 and 2017 exceeded the SW Ohio Headwater Streams effect based threshold of 0.51 mg/L (Figure 10). All of the 2017 TKN values exceeded the DuPage-Salt IPS threshold of 1.0 mg/L, but many values were below that threshold in 2016 including all values in Aptakisic Creek. The flow regime analysis shows that peak flow events were fewer and lesser in magnitude in 2016 than in 2017 when TKN values were nearly doubled an indication of a relationship between TKN and runoff events.


Nutrient Effects Assessment

The impact of nutrients on aquatic life has been well documented (e.g., Allan 2004), but the derivation of criteria and their form and application are only just now emerging. Unlike toxicants, the influence of nutrients on aquatic life is indirect through their influence on algal photosynthesis and respiration and the resulting increased magnitude of diel D.O. swings and by the biochemical oxygen demand exerted by algal decomposition. Nutrients can also affect food sources for macroinvertebrates and fish and the response of aquatic life to elevated nutrients is co-influenced by habitat (e.g., substrate composition), stream flow (e.g., scouring and dilution), temperature, and shading. Illinois is the leading state in terms of nitrogen (16.8%) and phosphorus (12.9%) loadings exported towards the Gulf of Mexico where an anoxic zone has developed (U.S. EPA 2008). In Illinois, as in neighboring Midwestern states that drain to the Mississippi River, efforts are underway to modernize nutrient water quality criteria.

The combined effects of nutrient enrichment were assessed to supplement the preceding descriptions of concentrations of each of the key nutrient related parameters. A multi-parameter approach modified from the Ohio SNAP method and the newer large rivers method (Miltner 2018), and as described in the Methods section, was employed. The results are detailed in a matrix that shows the fish and macroinvertebrate IBIs, the QHEI score, total P, nitrate-N, TKN, the maximum and minimum D.O. (based on Datasondes), the width of the diel D.O. swing, benthic chlorophyll a (as biomass), and an overall rating of the degree of nutrient enrichment based on exceedances of thresholds for the aforementioned indicators and

Figure 9. Concentrations of total nitrate-N by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent regional reference and IEPA non-standard (not effect based) thresholds.

Figure 10. Concentrations of total Kjeldahl nitrogen (TKN) by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent two different effect based thresholds.

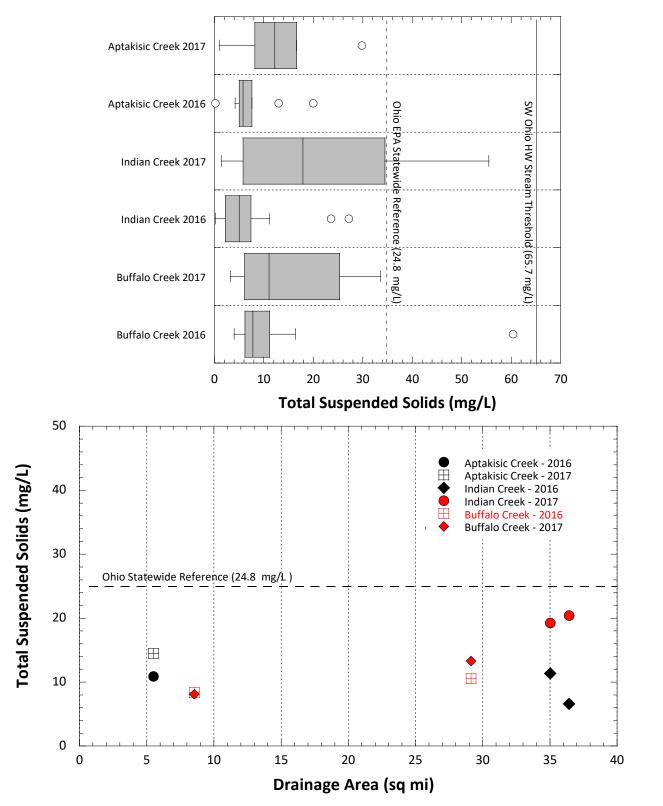
parameters at 14 sites in the 2017 study area (Table 6). The overall degree of nutrient enrichment effects are represented by the Enrichment Status that results from the degree to which each of the nutrient parameters and SNAP indicators exceed their respective thresholds, the minimum and maximum D.O., the width of the diel D.O. swing, and benthic chlorophyll a biomass. Only one site had a severe nutrient enrichment effect assigned – site 15-2 at RM 2.4 in Indian Creek. This site had the highest benthic chlorophyll a biomass in the study area, a high diel D.O swing, and a very low minimum D.O. The aquatic life attainment status was partial support with the fish IBI missing full support by only 3 IBI units and good habitat as indicated by a QHEI score of 73 that was the highest in the 2017 study area. Three sites were assigned a high enrichment effect status based mostly on high total P and elevated TKN values and a high to wide diel D.O swing. All three sites had very low or low benthic chlorophyll a biomass values. Three sites were assigned none for the enrichment effect status and all were the upstream most sites in their respective streams. One was site 18-2 at RM 0.8 in Aptakisic Creek upstream from the Lake Co. Des Plaines River WWTP. The effect of the WWTP discharge was evident in a high enrichment effect status at the downstream site (18-1) at RM 0.5 which resulted from very high total P and nitrate-N levels, a moderately high daytime D.O., and a moderate diel swing. The remaining six sites were all assigned a moderate nutrient effect status with all except one site having high or even wide diel D.O. swings. The site with a normal diel swing had elevated TKN and the second highest benthic chlorophyll a biomass in the study area. While none of the symptoms of nutrient enrichment observed in the tributary watersheds in 2016 (MBI 2017) were associated with WWTP discharges, they were thought to be the result of a combination of nutrients and organic matter in runoff and summer low flows resulting in localized reaches of low D.O. This assertion was based mostly on the frequency of very high daytime D.O. values (>10-12 mg/L) that suggest the existence of high or wide diel swings resulting from increased algal activity fostered by elevated nutrients and low flows.

As stated in the Methods section this is a preliminary assessment pending the development of a larger database of nutrient effect indicators for Northeast Illinois. The assignment of the nutrient enrichment effect ratings for the 2017 results does not appear to track well with the two primary nutrient parameters, total P and nitrate-N. Only two sites had extremely elevated total P values, both of which occurred in Aptakisic Creek. Nitrate-N values were likewise extremely elevated at these two sites, but were reflective of reference levels at most other sites. TKN is a sometimes overlooked indicator of nutrient enrichment effects and it is recommended along with TSS as part of the Ohio EPA large river nutrient method (Miltner 2018). Neither TKN nor TSS was consistently available at the 14 sites assessed in 2017 so it is recommended to include them as part of the suite of nutrient parameters in future surveys. In addition the Illinois Nutrient science Advisory Committee (NSAC 2018) recently released preliminary recommendations for nutrients including similarly structured combined criteria including sestonic and benthic chlorophyll a thresholds.

Total Suspended Solids (TSS)

Total suspended solids are a measure of filterable material in water and have long been an indicator of sewage and industrial wastes that are often associated with particulates, but also can be related to decaying plant and animal matter and suspended silts. Compared to the

Table 6. Results of applying an interim modified Stream Nutrient Assessment Procedure to 14 sites in the 2017 Year 1 study area. Descriptions of how each result reflects the degree of nutrient enrichment effects and results in an assignment of enrichment status are at the bottom of the matrix.


Site ID	RM	Drainage Area (sq. mi.)	fIBI	mIBI	Attain- ment Status	QHEI	Total Phos. (mg/l) ^a	Nitrate (mg/L) ^a	TKN ^b (mg/L)	Max. D.O.	Min. D.O.	Max. Diel Swing ^{c,d}	Diel Swing Narrative	Benthic Chl. a ^{e,f,g} (mg/m ²)	Benthic Chl. a Narrative	Enrichment Effect Status	Rationale for Enrichment Status
									Apt	akisic Creel	k						
18-2	0.8	4.94	24	24	NON - Fair	45.0	0.43	1.61	na	7.7	2.1	4.16	Normal	42.41	Low	None	Only one indicator (Total P) elevated; very low D.O. due to other causes.
18-1	0.5	5.5	22	25.6	NON - Fair	48.0	1.85	9.64	1.19	10.4	4.47	5.91	Moderate	97.04	Low	High	Elevated P, N, TKN; moderate diel swing; low Bchla.
		•			•				Bu	ffalo Creek	•		•		•	•	
17-3	7.7	9.61	15	49.6	NON - Poor	73.0	0.12	0.27	na	9.13	7.16	1.37	Normal	116.2	Low	Low	Only total P moderate.
17-2	6.1	22.1	18	50.8	NON - Poor	64.3	0.09	0.21	na	12.08	6.16	5.76	High	31.62	Very Low	Moderate	High D.O. and diel swing; very low Bchla.
17-1	0.75	29.14	25	30.8	NON - Fair	46.5	0.14	0.95	1.75	12.68	4.93	7.75	Wide	44.01	Very Low	High	High D.O. and diel swing, elevated TKN, moderate total P.
								Unnamed	d Tributary	to Buffalo	Creek @RI	Л 7.56					
17-4	0.68	8.55	8	31.2	NON - Poor	57.5	0.08	0.28	1.19	8.19	6.05	1.8	Normal	314.49	High	Moderate	Elevated TKN, high Bchla.
						•			In	dian Creek							
15-6	9.83	3.7	22	23.2	NON - Fair	59.5	0.16	0.27	na	6.57	4.74	1.73	Normal	5.13	Very Low	None	Elevated total P only, all others normal.
15-5	5.4	17.26	25	39.4	NON - Fair	66.5	0.10	0.34	na	11.3	4.8	6.5	Wide	25.23	Very Low	Moderate	Elevated total P, high D.O. and wide diel swing.
15-2	2.41	35.02	38	46.8	NON - Part	73.0	0.09	0.17	1.78	12.73	6.06	6.07	High	354.55	Very High	Severe	Elevated total P, High D.O. and diel wing, elevated TKN, very high Bchla.
15-1	0.17	36.43	34	53.5	NON - Part	65.0	0.09	0.18	1.69	11.06	5.38	5.51	High	61.76	Low	Moderate	Elevated total P, High D.O. and diel swing, low Bchla.
									Seavey	Drainage L	Ditch						
15-3	3.66	5.05	12	17.5	NON - Poor	62.0	0.09	0.41	na	13.03	6.83	5.77	High	62.83	Low	Moderate	Elevated total P, High D.O. and diel swing, low Bchla.
15-8	0.45	9.77	25	30.6	NON - Fair	55.0	0.07	0.15	na	15.92	2.78	12.9	Wide	3.16	Very Low	High	Normal total P, very high D.O. and diel swing, low Bchla.
									Kil	deer Creek					1		
15-7	4.6	2.86	16	32.2	NON - Poor	48.5	0.12	0.12	na	8.65	0.82	4.53	Moderate	7.42	Very Low	None	Elevated total P, very low D.O. and moderate diel swing, very low Bchla, other causes.
15-4	0.17	6.8	22	-	NON - Fair	53.5	0.15	0.16	na	10.44	4.05	5.7	High	17.36	Low	Moderate	High total P, high D.O. and moderate diel swing, low Bchla.
		No Enrichm	ient (None)			Excellent >75	<0.04	<0.44	<ref. liqr<br="">(0.20)</ref.>	<8 mg/L	Meets D.O.	Normal swing (<2 mg/L)	Normal	Very Low (s	≤60 mg/m²)	None	All indicators within normal ranges
		Low Enr	ichment			Good >60	>0.04;< 0.08	>0.44; <1.10	<ref. med.<br="">(0.30)</ref.>	<10 mg/L	Meets D.O.	<4 mg/L	Low	Low (60-1	.50 mg/m²)	Low	Only one indicator outside of normal ranges
		Moderate I	Enrichment			Fair >45	>0.08; <0.13	>1.10; <3.60	<effect Threshold (0.50)</effect 	>10 mg/L	1 Exceed- ance	<5 mg/L	Moderate		(150 - 320 /m ²)	Moderate	2-3 indicators outside of normal ranges
		High Enr	ichment			Poor >30	>0.13; <0.40	>3.60; <6.70	>1.0 mg/L	>12 mg/L	Multiple Exceed- ances	Moderate Swing; >5 mg/L	High		320 mg/m ²) Diel Swing	High	Multiple indicators outside of normal ranges
		Severe En	richment			V.Poor <30	>0.40	<u>></u> 6.70	>2.0 mg/L	>15 mg/L	MultipleeE xceed- ances	Wide Swing >6.5 mg/L	Wide	Very High (≥320mg/m²)	Severe	All indicators well outside of normal ranges

^aOhio EPA SNAP Procedure Thresholds (Ohio EPA 2015); bMBI(2015) IPS TKN threshold; cMinnesota eutrophication DO flux (5 mg/L) threshold (MPCA 2018) for the Southern River Nutrient Region; dOhio EPA DO flux or swing (6.5 mg/L) for their SNAP procedure (Ohio EPA 2015).

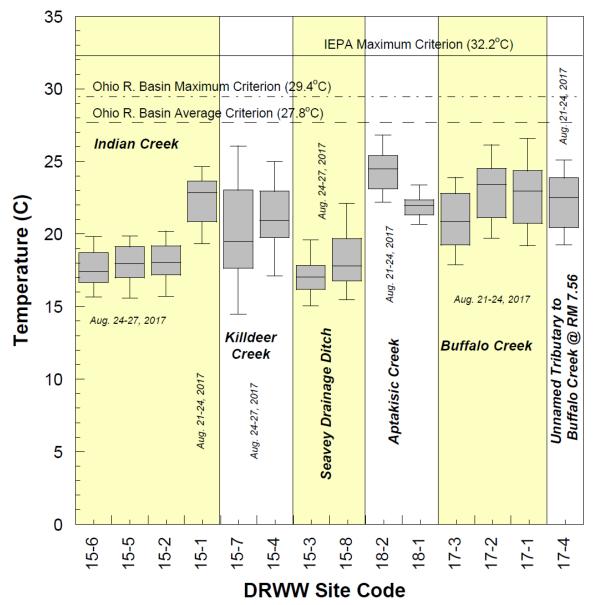
eVery low benthic chlorophyll benchmark based on oligotrophic/mesotriophic thresold (60 mg/m²) of Dodds et al. (1998); fLow-moderate benthc chlrophyll threshold (150 mg/m2) based on the "enriched conditions" threshold of Welch et al. (1988).

⁸High-very high benthic chlorophyll threshold (320 mg/m²) based on Ohio EPA SNAP procedures (Ohio EPA 2015).

Figure 11. Concentrations of total suspended solids (TSS) by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-andwhisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent a regional reference and effect based thresholds.

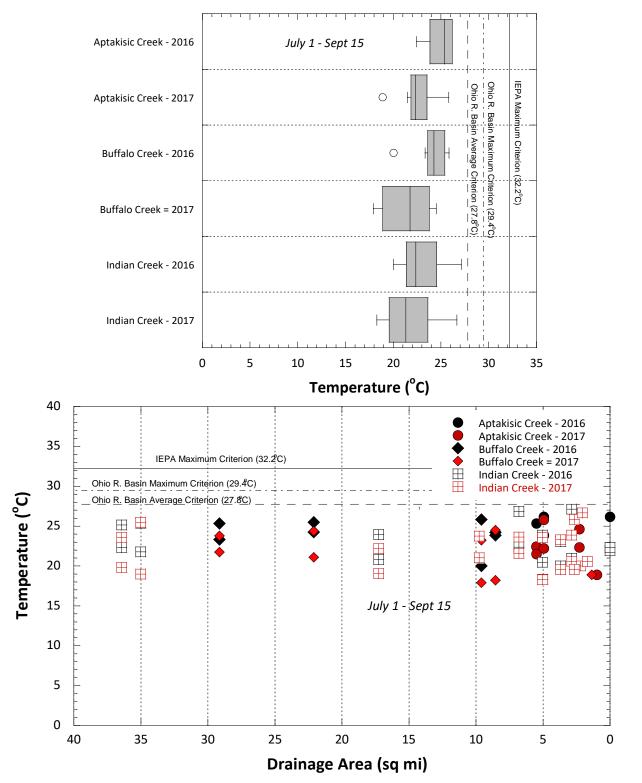
available regional reference and biological effect thresholds (Table 4) TSS concentrations in 2016 and 2017 were low and not suggestive of direct negative effects on the biota (Figure 11). The results did reflect the differences in the flow regimes between 2016 and 2017 with higher TSS values measured in 2017, which tracks with the TKN results.

Temperature


Temperature is a controlling factor for aquatic life, hence it is important to document the thermal regime and any apparent alterations. This was done via grab measurements made at the time of chemical and biological sample collection and continuously via short-term deployment of Datasondes. Based on continuous data collected during Datasonde deployments (August 21-24 and August 24-27, 2017) and grab sample data collected July 1-September 15, there were no temperature values that were of concern in terms of potential harm to aquatic life. Typically the potential for adverse thermal effects are evaluated based on the warmest period of the year and against temperature criteria that are intended to protect aquatic life. The IEPA summer maximum criterion of 32.2°C (90°F) is at the extreme maximum for the most sensitive stream fish and which is shown to be met at all times by the continuous data (Figure 12) and the grab sample data (Figure 13). The Ohio temperature criteria are stream size specific with a maximum and average criteria of 29.4°C (84.9°F) and 27.8°C (82.0F) and these are met as well, thus there is no reason to believe that temperatures are a limiting factor to the biota. There were differences between the two Datasonde deployment periods, but these are also well within the intra-seasonal variations that can occur in small streams. The risk in an urban watershed is with artificial heating by runoff from paved surfaces, small ponds, and industrial process discharges.

Urban Parameters

Urban parameters are those that indicate runoff from urban land surfaces and can typically be in the form of elevated concentrations of dissolved materials, suspended solids delivered by runoff events and increased bank erosion due to altered flows, heavy metals, nutrients, and polycyclic aromatic hydrocarbon (PAH) compounds from automobiles and road and parking surfaces. Six parameters measured in the water column (Table 7) plus metals and organics measured in sediments (Tables 8 and 9) were used to assess for urban related water quality impacts.


Dissolved Materials in Urban Runoff

In temperate climates such as exist in northern Illinois, dissolved materials in the form of chlorides are an emerging problem because they accumulate in soils and shallow groundwater and have been documented to reach concentrations that can threaten and impair aquatic life. Of particular concern in urban areas with higher road density is the concentration of chlorides from winter road salt applications and point source loadings from water softening blowdown. Kelly et al. (2012) identified a steadily increasing trend in chloride levels in the Illinois River at Peoria where the median increased from 20 mg/L in 1947 to nearly 100 mg/L in 2004 with high values in the 1940s of <40 mg/L and spikes in 2003 of >300 mg/L. In addition to chlorides

Figure 12. Temperature (°C) measured continuously by Datasondes deployed for 3-4 day periods during August 21-24 and 24-27, 2017 at 14 locations in the 2017 study area. Box-andwhisker plots show the minimum, maximum, 25th and 75th percentiles, median, and outlier (>2 interquartile ranges from the median) values. The IEPA maximum (32.2°C) and the Ohio EPA General Ohio River Basin maximum (29.4°C) and average (27.8°C) criteria are shown by solid and dashed lines.

dissolved materials were measured by specific conductance (Table 7). Chlorides do not exhibit a simple runoff and export mode of effect, but rather accumulate in near surface groundwater (Kelly 2008), soils, and land surfaces adjacent to streams. Seasonal studies have shown that elevated summer concentrations are correlated with acute concentrations during late winter and spring periods (Kaushal et al. 2005). Research in New England (Kaushal et al. 2005) and Minnesota (Novotny et al. 2008) show that chlorides can accumulate in watersheds and that there is a strong association between high winter and elevated summer concentrations.

Figure 13. Temperature (°C) based on grab samples collected in 2016 and 2017 by subwatershed and stream in the Year 1 2017 study area. Raw values in tributary subwatersheds are shown as box-and-whisker plots (upper panel, shaded boxes) and by individual site by drainage area (lower panel) in 2016 and 2017. Dashed and solid lines represent the IEPA maximum temperature criterion and the Ohio EPA General Ohio River Basin maximum (29.4°C) and average (27.8°C) criteria.

Table 7. Mean specific conductance and concentrations of total suspended solids (TSS), chloride, total Kjeldahl nitrogen (TKN), total copper, and total zinc measured at sampling sites in the Year 1 2017 study area during May-October 2017. Yellow highlighted values exceed thresholds listed at the bottom of the table.

	River	Drainage Area	Spec. Conductance	TSS	Chloride	TKN	Total Cu	Total Zn							
Site ID	Mile	(sq. mi.)	μS/cm	(mg/L)		(mg/L)	(µg/L)	(µg/L)							
		Γ		kisic Creel				11.2							
18-3	4.3	2.3	1020	-		Chloride (mg/L)TKN (mg/L)Cu (µg/L)134- 4.2 173- 4.2 173- 4.2 236 1.15 4.2 236 1.15 4.2 236 1.15 4.2 116- 4.2 116- 4.2 111 1.25 4.2 141 1.25 4.2 161 1.25 4.2 161 1.25 4.2 106- 4.1 69- 4.1 107- 4.1 126 1.17 4.1 133 1.17 4.1 125- 4.1 126 1.17 4.1 132- 4.1 125- 4.1 108- 4.1 161- 4.1 ek 87 - 87 - 4.1									
18-2	0.8	4.9	884	-		-		11.2							
18-1	0.5	5.5	1434	12.2			4.2	11.2							
			amed Tributary t	o Aptakisi		M 4.6	1								
18-5	0.05	1.0	828	-	116	-	4.2	11.2							
		r		alo Creek											
17-5	14	1.4	1015	8.9				11.2 11.2							
17-3	7.7	9.6	836	15.3			TKN Cu (μg/L) (- 4.2 - - 4.2 - 1.15 4.2 - 4.6 - - - 4.2 - 1.15 4.2 - 4.6 - - - 4.2 - 1.25 4.2 - 1.25 4.2 - 1.25 4.2 - 56 - - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1 - - 4.1								
17-2	6.1	22.1	814	15.3				11.2							
17-1	0.75	29.1	1037	15.3			4.2	11.2							
	•	1	amed Tributary t		Creek @RN	1 7.56									
17-4	0.68	8.6	888	8.9	170	1.15	4.2	11.2							
	•	1	Forest	Lake Dra	in		1								
15-11	0.83	1.7	754	-	106	-	4.1	6.5							
	•	1	Indi	ian Creek	1		1								
15-9	10.83	2.7	559	-		-		6.5							
15-6	9.83	3.7	632	-	69	-	4.1	6.5							
15-5	5.4	17.3	821	-	107	-	4.1	6.5							
15-2	2.41	35.0	945	15.8	126	1.17	4.1	6.5							
15-1	0.17	36.4	948	12.4	133	1.17	4.1	6.5							
	•	1	Killd	eer Creek			1								
15-12	5.2	2.1	789	-	132	-	4.1	6.5							
15-7	4.6	2.9	966	-	125	-	4.1	6.5							
15-13	2.21	5.0	854	-	122	-	4.1	6.5							
15-4	0.17	6.8	933	-		-	4.1	6.5							
			,	Drainage D	Ditch										
15-3	3.66	5.1	984	-	141	-	4.1	6.5							
15-8	0.45	9.8	993	-	161	-	4.1	6.5							
			W. Branc	h Indian C	Creek										
15-10	0.8	2.2	679	0	87	-	4.1	6.5							
		ter Thresholds:	>600ª	16ª	112 ^b	1.0 ^b	5.0° µg/L	15.0ª μg/L							
		ble Thresholds:	>610ª	24.75 ^a											

^a Ohio EPA statewide reference (75th percentile); ^b DRSCW IPS threshold.

Novotny et al. (2008) identified that 78% of the road salt applied in a Minnesota watershed accumulated in a given year and contributed to an increase in summer chloride concentrations. Specific conductance values were routinely elevated above the Ohio reference levels for headwater and wadeable streams exceeding 1000 μ S/cm in Aptakisic Creek and

								•	1	1	1		1	1	
	River														
Site ID	Mile	As	Ва	Cd	Cu	Pb	Fe	Mn	Ni	Zn	AI	V	Sr	Ag	Со
				-			Aptakisi	c Creek	_	_			-	-	
18-3	4.3	3.35	27.1	0.37	16.3	10.3	10700	370	10.8	45.3	3920	10.4	65.7	0.06	5.19
18-2	0.8	6.56	89.9	0.62	24.1	20.2	21100	548	22.1	78.2	10400	23.9	47.9	0.06	10.8
18-1	0.5	3.03	123	0.38	21.9	15.3	14800	397	13.8	78.8	6910	14.9	107	0.06	6.56
							Buffalo	Creek							
17-3	7.7	4.79	37.2	0.38	14.2	13.6	12800	603	11.9	36.8	4210	11.6	33.2	0.06	6.18
17-2	6.1	4.02	34.4	0.35	11.8	10.8	11800	497	9.71	34.8	3930	11.3	42	0.06	4.88
17-1	0.75	3.81	32.3	0.49	17.6	16.8	12300	448	11	57.8	4310	12.1	52.9	0.06	5.21
					Unnam	ed Tribu	tary to Bu	uffalo Cre	eek @ RN	Л 7.56					
17-4	0.68	5.78	32.7	0.54	14.9	13.9	16200	245	10.9	50.4	4810	15	30.9	0.06	5.44
							Indian	Creek							
15-9	10.83	4.2	34.3	0.32	12.9	11.3	11600	597	10	29.5	4230	12.3	22.1	0.06	4.83
15-6	9.83	6.64	56.1	0.48	21.4	15.4	17300	611	16.4	53	7370	18.4	30.4	0.06	7.84
15-5	5.4	5.25	56.4	0.59	24.1	17.8	17900	450	16.3	70.8	8500	18.5	43	0.06	7.4
15-2	2.41	3.86	54.9	0.63	29.8	18	17700	460	14.6	75.8	7080	17.3	61.6	0.23	6.72
15-1	0.17	2.54	17.9	0.28	10.2	8.43	8490	313	6.76	34.7	2560	8.43	37.5	0.06	3.33
						Sec	avey Drai	nage Dit	ch						
15-3	3.66	6.38	32.4	0.75	20.9	30.7	19600	293	16	61.6	7460	16.4	30.7	0.06	5.39
15-8	0.45	2.3	23.8	0.56	25.6	13.4	9120	230	9.64	58.8	3280	9.1	41.9	0.58	4.09
							Kildeer	Creek	•	•					
15-7	4.6	5.43	45.2	0.41	19.6	16.7	15700	330	16.5	40.9	7470	15.1	38	0.06	7.33
15-4	0.17	9.86	45.8	0.58	13.7	16.5	33800	489	14.3	59.5	5430	16.2	30.8	0.06	7.92
MacDonald	TEC	9.79	None	0.99	31.6	35.8	20000	460	22.7	121.0	None	None	None	1.60	None
et al. 2000	PEC	33.00	None	4.98	149.0	128.0	40000	1100	48.6	459.0	None	None	None	2.20	None
OEPA 2008	OH SRVs		190.0	0.79	32.0	47.0	41000	1500	33.0		29000	40.0		0.43	12.00
Short 1998	Elevated Highly	7.20	145.0	2.00	37.0	60.0	26100	1100	26.0	170.0	None	None	None	None	None
(IEPA)	El.	18.00	230.0	9.30	170.0	245.0	53000	2300	45.0	760.0	None	None	None	5.00	None

Table 8. Heavy metal concentrations (mg/kg) in sediment at 16 sites in the 2017 Year 1 study area. Highlighted cells indicate an exceedance of one or more thresholds listed at the bottom.

Table 9. Sediment PAH levels (mg/kg) in sediments at 16 sites in the 2017 Tear 1 study area. Highlighted cells indicate an exceedance of one or more thresholds listed at the bottom (TEL – threshold effect level; PEL – probable effect level; TEC – threshold effect concentration; PEC – probable effect concentration).

	trutionj.																
Site ID	RM	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)- anthracene	Benzo(a)-pyrene	Benzo(b)fluor- anthene	Benzo(g,h,i)- perylene	Benzo(k)fluor- anthene	Chrysene	Dibenzo(a,h)- anthracene	Fluoranthene	Fluorene	Indeno(1,2,3cd)- pyrene	Naphthalene	Phenanthrene	Pyrene
					1			Aptakis		1				1			
18-3	4.3	286.0	66.0	603	907	919	1240	585	525	1110	112	3410	328	581	66	2950	2370
18-2	0.8	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9	68.9
18-1	0.5	73.3	68.4	369	965	913	1240	489	565	1100	112	3220	119	531	68.4	2110	2240
								Buffalo	Creek								
17-3	7.7	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4	58.4
17-2	6.1	61.8	61.8	61.8	91	104	151	61.8	61.8	137	61.8	279	61.8	61.8	61.8	97.8	226
17-1	0.75	60.9	60.9	156	679	806	1160	666	471	966	112	2220	60.9	625	60.9	864	1570
						Unna	med Tribu	tary to B	Suffalo Cre	ek @RM	7.56						
17-4	0.68	60.4	60.4	60.4	88.3	106	176	76	78.3	154	60.4	328	60.4	69.5	60.4	128	251
								Indian	Creek								
15-9	10.83	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6
15-6	9.83	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8	64.8
15-5	5.4	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115
15-2	2.41	101	101	101	351	457	703	325	276	553	101	1350	101	300	101	595	933
15-1	0.17	56.5	56.5	56.5	63.5	67.9	102	56.5	56.5	87.9	56.5	204	56.5	56.5	56.5	95.2	157
								Kildeer	Creek								
15-7	4.6	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7	75.7
15-4	0.17	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7	64.7
							Sec	avey Dra	inage Ditc	h							
15-3	3.66	59.5	59.5	59.5	118	115	166	88	68.3	152	59.5	278	59.5	82	59.5	108	247
15-8	0.45	68.8	68.8	68.8	303	455	817	404	280	588	68.8	1240	68.8	389	68.8	288	879
ŋ	TEL	6.7	5.87	46.9	31.7	31.9	None	None	None	57.1	6.22	111	77.4	None	34.6	41.9	53
Don it al. 00	PEL	88.9	128	245	385	782	None	None	None	862	135	2,355	144	None	391	875	875
MacDona Id et al. 2000	TEC	None	None	57.2	108	150	240	170	240	166	33	423	77.4	200	176	204	195
2	PEC	None	None	845	1050	1450	13,400	320	13,400	1,290	135	2,230	536	3,200	561	1,170	1,520

Buffalo Creek. The highest value of 1434 μ S/cm occurred in Aptakisic Creek downstream from the Lake Co. Des Plaines River WWTP. Conductance values were the lowest in Indian Creek, but all except one site exceeded the reference thresholds. TKN values exceeded the DRSCW IPS threshold of 1.0 mg/L at all of the eight (8) sites where it was measured. Such exceedances are common in urban watersheds and are the product of urban runoff. The other three parameters (TSS, copper, and zinc) were below effect thresholds at all sites where each was measured. Chloride levels (mg/L) tracked conductance levels which were well correlated with each other. Most sites exceeded the DRSCW IPS threshold of 112 mg/L which is a biological effect derived threshold. The lowest values occurred in the upper parts of the Indian Creek subwatershed. In studies of neighboring Salt Creek and the West, East, and Lower DuPage River watersheds, multi-year sampling has identified increasing trends of elevated concentrations of dissolved materials, particularly chlorides (MBI 2013, 2014, 2016a, 2016b). High levels of chlorides during the summer in the Year 1 subwatersheds suggest that late winter and early spring chloride levels are much higher during runoff events and likely contribute to the disproportionate impairment in headwater streams. Actual concentrations that result in adverse effects on fish and invertebrates likely occur during peak runoff events in late winter and early spring when values approach or exceed the 230 mg/L U.S. EPA recommended chronic criterion.

Sediment Chemistry

Sediment samples were evaluated against guidelines compiled by McDonald et al. (2000) and the Ontario Ministry of Environment (1993) that list ranges of contaminant concentrations by threshold (TEL) or probable (PEL) effects on aquatic life supplemented with some other parameters summarized in the NOAA SQUIRT documents (Buchman et al. 2008) and for sediment metals by Short (1998) for Illinois that identified elevated and extremely elevated sediment metal concentrations. Specifically, threshold effect levels (TEL) are where toxic effects are initially apparent and likely to affect the most sensitive organisms. Probable effect levels (PEL) are where toxic effects are more likely to be observed over a wider range of organism sensitivities. Sediment metal sampling results from 2016 are summarized by concentration rating and parameter class in Table 8 and polycyclic aromatic hydrocarbon (PAHs) compounds in Table 9. PAHs result from the incomplete combustion of hydrocarbons and are a common component of stormwater runoff in urban areas.

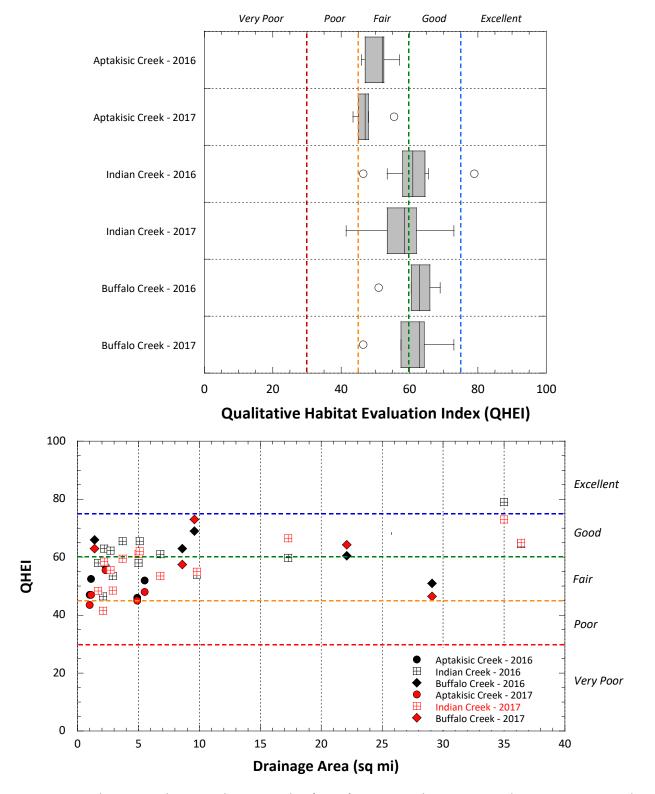
Elevated levels of heavy metals in urban landscapes are commonly associated with runoff from roads and highways and industrial and municipal sources. Given the development in the Year 1 subwatersheds some elevated metals were expected, particularly where road and building densities are high. Manganese was elevated above TEL benchmarks in 7 of 16 samples collected (Table 8) with no sites above the higher PEL benchmarks. Iron was exceeded at two sites, one TEL and one PEL and is likely an indication of inorganic sediment in runoff.

Sediment Organics

Table 9 shows concentrations of PAH compounds in the sediment in relation to the PEL/PEC benchmarks and TEL values where these are higher than the minimum detection limits. Values greater than the PELs are color coded red and greater than the TELs and TECs and less than the PEL/PEC are color coded orange and yellow (Table 9). Five values for benzo(g,h,i)perylene exceeded the MacDonald et al. (2000) PEL at two Aptakisic Creek locations and at downstream locations in Buffalo Creek, Indian Creek, and Seavey Drainage Ditch. Three other PEL exceedances occurred in Aptakisic Creek downstream from the Lake Co. Des Plaines River WWTP for fluoranthene, phenanthrene, and pyrene. The other PEL exceedance was for pyrene at the downstream site in Buffalo Creek. PAH compounds above the TEL/TEC thresholds were widespread among selected PAH compounds throughout the Year 1 subwatersheds especially for anthracene and dibenzo(a,h)anthracene at nearly every site. Position in the watershed (e.g., headwaters vs. downstream) seemed to be more of a factor in the presence of elevated PAH compounds in 2017 with the higher levels occurring downstream. PAHs are carried in runoff from roads, parking lots, and other transportation related land uses as well as industrial sources. While many of the 2017 sites are in proximity to roads, parking lots, and other impervious surfaces, other sites without such values are also near these features. It will take a more detailed examination of potential sources to identify the origins of the hot spots in the 2017 results.

Physical Habitat Quality for Aquatic Life - QHEI

The physical habitat of a stream or river is a primary determinant of biological quality and potential. Streams in the glaciated Midwest, left in their natural state, typically offer pool-runriffle sequences, moderate to high sinuosity, and well-developed channels with deep pools, heterogeneous substrates, and cover in the form of woody debris, hard substrates, and aquatic macrophytes. Lower gradient streams may not offer distinct riffle habitats and are oftentimes run and glide dominated, but can still offer a diversity of substrates, well developed pool habitats, and well developed instream cover features associated with woody debris and aquatic macrophytes. The Qualitative Habitat Evaluation Index (QHEI) categorically scores basic components of stream habitat into ranks according to the degree to which those components are found compared to a natural state, or conversely, in an altered or modified state. In the Upper Des Plaines River study area, QHEI scores and physical habitat attributes were recorded in conjunction with the fish sampling conducted at each site.


Year 1 2017 Study Area

Based on QHEI scores and the number of good and modified attributes (after Rankin 1989, 1995; Table 11 and Figure 14) overall habitat quality ranged from poor to very good in 2017. Fair and poor QHEI scores were the result of the predominance by high and moderate influence modified attributes with as many as 6-9 at the poorest quality sites (Table 11). The number of modified QHEI habitat attributes are illustrated in Figure 15 for each major subwatershed and each site. The most frequently occurring high influence modified attributes were a predominance of silt/muck substrates, a lack of sinuosity, sparse or no cover, and maximum pool depths <40 cm. Fast current types were absent at all sites and reflect the generally low gradient character of the subwatersheds. Moderate to high silt cover and moderate to extensive substrate embeddedness were observed at all except one site which is consistent with our findings throughout the Upper Des Plaines watershed (MBI 2017). Fair-poor development and moderate to extensive riffle embeddedness are moderate influence modified attributes that were observed at all except three and four sites, respectively. The ratio of modified to good attributes was >2.0 at 11 of 23 sites and extremely high (9.0 and 10.0) at two sites. Ratios >2.0 generally indicate a greater number of habitat modifications that would require direct mitigation to reverse. It also means that meeting the General Use biocriteria would likely be precluded by habitat regardless of water quality conditions raising concerns about use attainability (Rankin 1995). The sites with ratios <2.0 is the result of having fewer modified attributes coupled with enough good attributes to offset the negative influence of the modified attributes.

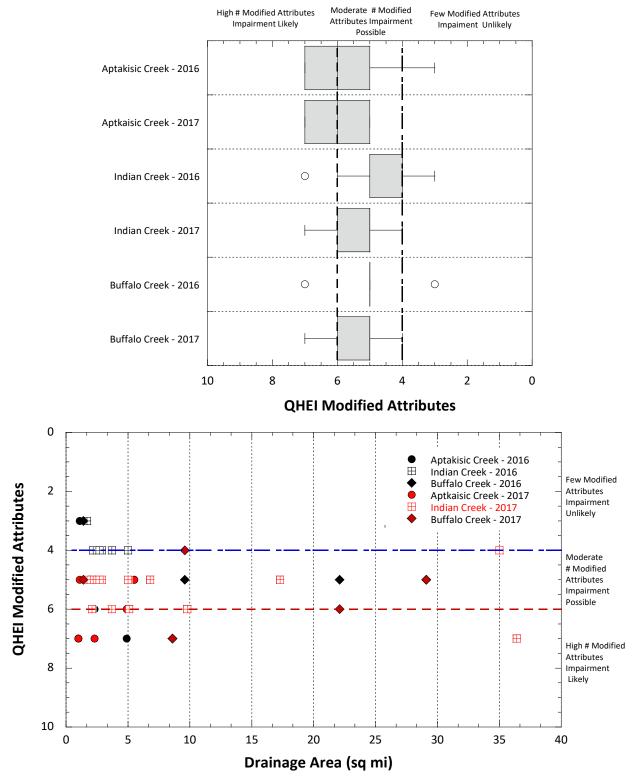

With the exception of the site at the mouth of Buffalo Creek (17-1) all of the fair and poor QHEI scores were in the upper reaches of the 2017 study area subwatersheds at drainage areas <10 square miles (Figure 14), which is consistent with our experience of observing smaller headwater streams being disproportionately modified in urbanized watersheds (Yoder et al. 2000; Miltner et al. 2004). There was an overall pattern of QHEI scores in 2017 being slightly

Table 1	good	habita	t att	ribu	te;	• - I	high	influ	ienc	e mo	odifi	ed a	ttrik	ute;		mod	erat	e inf	fluen	ice n	nodi	fied	attri											
	yello	w, oran	ige, i	or re	a n	5				oraa		witr	i the	•	gh In	fluen	ce M	odifie	-	ea a	ttrib			te Inf	luen	e Mo	odifie	d Att	tribut	tes			Ra	tios
																Attrik	outes																	
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	"Good" Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Modified Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	2 Cover Types	Intermittent Flow/Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle	No Riffle	Modified Habitat Attributes	Ratio of Modified (High):Good	Ratio of Modified (All):Good
															Ap	takis	ic Cr	eek																
18-4	4.70	47.0											3		•	•			2	•				•	•			•		•		5	0.67	2.33
18-3	4.30	55.5											2			•	•		2	•	•			•	•			•	•	•		7	1.00	4.50
18-2	0.80	45.0											2		•	•			2	•	•			•				•	•		•	6	1.00	4.00
18-1	0.50	48.0											2	•		•			2		•			•				•	•		•	5	1.00	3.50
		_									U	nnar	ned	Tribı	ıtary	to A	ptak	cisic (Creel	k @R	M 4	.6												
18-5	0.05	43.5											1		•	•		•	3	•	•			•	•			•	•	•		7	3.00	10.0
	T														Βι	ıffalo	o Cre	ek																
17-5	14.0	63.0											6						0		•			•				•	•	•		5	0.00	0.86
17-3	7.70	73.0											6						0		•							•	•	•		4	0.00	0.67
17-2	6.10	64.3											4						0	•	•				•			•	•	•		6	0.00	1.50
17-1	0.75	46.5											1			•	•		4		• • •			•				•	•		•	5	4.00	9.00
17.4	0.69			_			-	_	-		U	nnai		Irib	utary	/ to E	Buffa	io Ci		@RN	17.5	0					Т					7	0.25	2.00
17-4	0.68	57.5										_	4		1	dian	-	ok	1		_			-	_			_	-	-		7	0.25	2.00
15-9	10.8	55.5		-	_		-					_	5			uiun	Crea	-	1		•			•				•	•	•	_	5	0.20	1.20
15-6	9.83	59.5				-	-						3					•	1		•			•	•			•	•	•		6	0.20	2.33
15-5	5.40	66.5											5						0		•			•				•	•	•		5	0.00	1.00
15-2	2.41	73.0											6						0		•							•	•	•		4	0.00	0.67
15-1	0.17	65.0											3						0	•	•			•	•			•	•	•		7	0.00	2.33

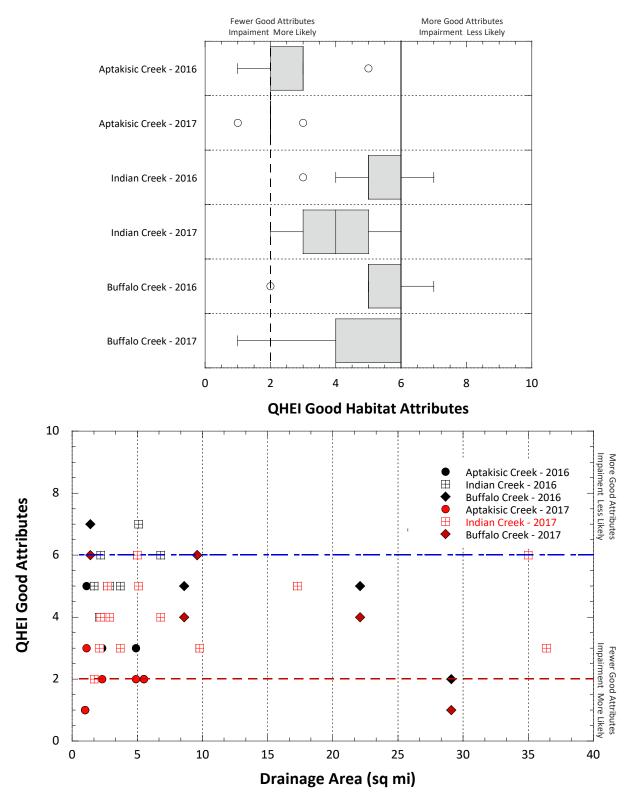

Table 1	good	litative habita w, oran	t att	ribu	ıte;	• - /	high	influ	uenc	e mo	odifi	ed a	ttrib	ute;	- -	mod	erat	te inj	fluen	ce n	nodij	fied	attr											
						Goo	d Hal	bitat	Attrik	outes				Hi	-	fluen Attrik		odifi	ed			Мо	dera	te Inf	luen	ce Mo	odifie	d Ati	tribut	es			Ra	itios
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	"Good" Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Modified Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	2 Cover Types	Intermittent Flow/Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle	No Riffle	Modified Habitat Attributes	Ratio of Modified (High):Good	Ratio of Modified (All):Good
															Kil	Ildee	r Cre	ek																
15-12	5.20	41.5											3		•				1		•			•	•			•	•	•		6	0.33	2.33
15-7	4.60	48.5											4					•	1		•			•				•	•	•		5	0.25	1.50
15-13	2.21	61.0											6						0		•			•				•	•	•		5	0.00	0.83
15-4	0.01	53.5											4		•				1		•			•				•	•	•		5	0.25	1.50
		1	T											W.	Bra	nch I	ndia	n Cre	eek			-					-							
15-10	0.80	58.5											4					•	1		•			•				•	•	•		5	0.25	1.50
				_	-					-		-	_	Se	avey	' Dra	inag	e Dit		-		-	-			1	-							
15-3	3.66	62.0		-									5				•		1		•			•	•			•	•	•		6	0.20	1.40
15-8	0.45	55.0											3		5	-			1	-	•			•				•	•	•		6	0.33	2.33
15 11	0.02	40.2					-			-	-	-	2		Fore	est Lo	ike L	Drain	2				-									-	1 50	4.00
15-11	0.83	48.3											2		-		-	•	3	-	-			-				-	-			5	1.50	4.00

Figure 14. Qualitative Habitat Evaluation Index (QHEI) scores in the Year 1 study area in 2016 and 2017. Values in the principal subwatersheds are shown as box-and-whisker plots (upper panel) and as a scatter plot of individual sites by drainage area (lower panel). The narrative ranges of QHEI scores from excellent to very poor are indicated.

Figure 15. The number of modified QHEI attributes at sites in the Year 1 study area in 2016 and 2017. Modified attributes in the principal subwatersheds are shown as box-and-whisker plots (upper panel) and as a scatter plot of the number of modified attributes at individual sites on a reverse scale by drainage area (lower panel) along a reverse scale on the y-axis. Thresholds for the likelihood of the number of modified attributes causing a biological impairment are indicated.

Figure 16. The number of good QHEI attributes at sites in the Year 1 study area in 2016 and 2017. Good QHEI attributes in the principal subwatersheds are shown as box-and-whisker plots (upper panel) and as a scatter plot of the number of good attributes at individual sites by drainage area (lower panel). Thresholds for the likelihood of the number of good attributes fostering biological attainment are indicated.

lower than in 2016 (Figure 15, upper panel) which could be related to the spates of peak flows that occurred through July 2017 about two weeks before the QHEI assessments were made. There was a trend towards an increased accumulation of modified attributes (Figure 15) and a decline in the number of good attributes (Figure 16) in 2017 compared to 2016.

Aptakisic Creek

Habitat was uniformly fair in the Aptakisic Creek subwatershed with the site in the Unnamed Tributary (18-5) in the poor quality range (Table 11; Figure 14). All five sites were predominated by modified QHEI attributes with the modified:good ratios >4.0 at all except one site and the highest ratio in the study area of 10.0 in the Unnamed Tributary (18-5). Each site had at least two high influence modified attributes, 5-7 moderate influence modified attributes, but only 1-3 good attributes.

Indian Creek

As the largest subwatershed in the 2017 study area Indian Creek had 13 of the 23 sites sampled with six sites in the mainstem and remainder scattered among four tributaries. It had the widest range of habitat quality from good to poor in 2017 and is the least urbanized of the three subwatersheds. The mainstem had marginally good to good quality habitat as reflected by the QHEI scores with consistently good quality habitat at the downstream most three sites (15-1, 15-2, and 15-5; Table 11 and Figure 14). These were also three of only six sites in the study area that had no high influence modified attributes. However, moderate influence attributes were among the highest in the study area and included moderate-high silt, fair-poor development, no fast current types, moderate to extensive embeddedness of the site and riffle habitats. The modified:good ratios varied with two sites >2.0 (15-6 and 15-1) and due to having fewer good attributes. With the exception of two sites in the tributaries (15-13 Kildeer Creek and 15-3 Seavey Drainage Ditch) QHEI scores were poor or fair. These sites had up to three high influence modified attributes, 5-6 moderate influence modified attributes, and fewer good attributes (Table 11; Figures 15 and 16). However, modified:good ratios were <2.0 at only three sites and 4.0 at the Forest Lake Drain site (15-11).

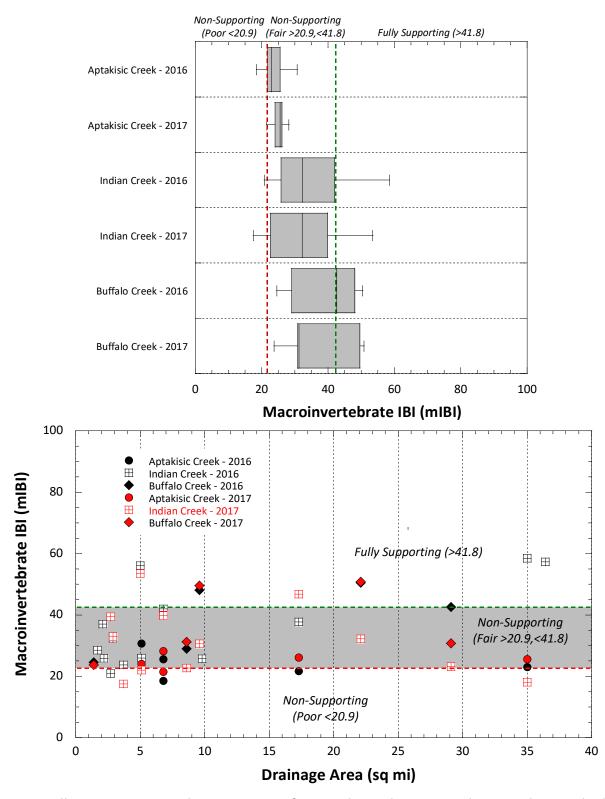
Buffalo Creek

Sites in the Buffalo Creek subwatershed varied from fair to very good quality habitat. The three upstream sites on the mainstem were good (17-2 and 17-5) and very good (17-3) and the unnamed tributary was just shy of good (Table 11). The site at the mouth of the mainstem (17-4) was fair with one of the lowest scores in the 2017 study area. It had four high influence modified attributes, five moderate influence modified attributes, and only one good attribute resulting in a modified:good ratio of 9.0 which was the highest in the 2017 study area (Table 11) and limiting to the aquatic biota. Conversely, ratios were well less than <2.0 at the other mainstem sites and exactly 2.0 in the unnamed tributary.

Biological Assemblages – Macroinvertebrates

There were 127 unique macroinvertebrate taxa collected in the Year 1 study area in 2017 (Appendix B). The predominant taxa collected were primary facultative or tolerant and most are characteristic of lentic type habitats and are tolerant of the moderate to heavy siltation that is prevalent throughout the study area. The most numerous was *Hyalella azteca*, a facultative taxon, followed by Oligochaeta which are highly tolerant (Table 11). The chironomid *Polypedilum (P.) illinoense* is a highly tolerant taxon to toxics and also increases in its probability of collection as the overall substrate quality declines. The prevalence of silt tolerant taxa was a key line of evidence in assigning siltation as a cause contributing to aquatic life impairment in the Upper Des Plaines River watershed in 2016 (MBI 2017).

Table 11. The fifteen most abundant macroinvertebrate taxa collected in the Year 1 study area in2017 including number collected, taxa group, functional group, and taxa toleranceassignments.


Taxa Code	Taxa Name	Number Collected	Taxa Group	IL Functional Group	IL Tolerance Score
06201	Hyalella azteca	1127	N	CG	5
03600	Oligochaeta	890	N	CG	10
84470	Polypedilum (P.) illinoense	407	D	SH	6
93200	Hydrobiidae	351	N	SC	6
01801	Turbellaria	351	N	PR	6
22001	Coenagrionidae	266	0	PR	5.5
52200	Cheumatopsyche sp	262	CA	CF	6
84450	Polypedilum (Uresipedilum) flavum	236	D	SH	6
05800	Caecidotea sp	231	N	CG	6
98001	Pisidiidae	223	N	CF	5
98200	Pisidium sp	192	N	CF	5
83300	Glyptotendipes (G.) sp	171	D	CF	10
83040	Dicrotendipes neomodestus	145	D	CG	6
69400	Stenelmis sp	140	CO	SC	6
68700	Dubiraphia sp	134	CO	CG	5
	Non-Insect; MA - Mayfly; O - Odonata; CA - Caddisfly; pup: CG - Collecter/Gatherer; PR - Predator; CF - Collect		· ·		1

IL Tolerance Score Ranges from 0 (Least Tolerant) to 10 (Most Tolerant)

Year 1 2017 Study Area

Macroinvertebrate assemblage quality in the 2017 Year 1 subwatersheds ranged from poor to good condition (Table 12; Figure 16). Only four sites of the 23 sites met the mIBI biocriterion of 41.8. Two sites were rated as poor and 17 sites were rated fair. Table 12 lists selected mIBI metrics and macroinvertebrate assemblage attributes two of which are key biological response signatures associated with toxic impacts (% toxic tolerant taxa) or organic enrichment (% organic enrichment tolerant taxa; Yoder and DeShon 2003). Four sites exceed the organic enrichment threshold with an additional six sites just below. Only one site exceeded the toxic tolerant threshold. The number of EPT taxa was either zero or low (1-3) at 17 pf the 23 sites while only two sites had EPT taxa counts considered to be good. Overall mIBI scores were lowest in the Aptakisic Creek subwatershed and highest in Buffalo Creek with little apparent

are	e shaded	d by level	l of use s	support:	green –	fully sup	porting;	; yellow -	– non-su	oport fa	ir; red –	ar 1 study non-supp I DeShon(ort poor;	key met	trics as :	signatur	es of
Site ID	River Mile	Drain- age Area (mi. ²)	fiBi	Native Sp.	DELT Anom alies%	Intol. Sp.	%Min- eral Spaw- ners	% Toler- ant	mlBl	Total Taxa	Intoler -ant Taxa	% Toler- ants	EPT Taxa	% EPTs	MBI	% Toxic Tol. Taxa	% Org. Enrich. Taxa
							S	Seavey Dr	ainage Dit	ch							
15-3	3.66	5.05	12	5	0	0	0	40.0	17.5	18	1	19.0	0	0	6.6	10.3	33.1
15-8	0.45	9.77	25	14	0	1	11.8	42.9	30.6	29	3	19.1	4	2.9	7.0	3.5	46.5
			-					Aptaki	sic Creek								
18-4	4.70	1.09	28	4	0	0	0	50.0	21.5	19	0	11.6	0	0	6.5	2.1	52.3
18-3	4.30	2.3	16	5	0	0	0	60.0	28.2	22	2	9.9	2	0.7	6.3	3.9	34.4
18-2	0.80	4.94	24	12	0.38	0	0.8	41.7	24.0	20	1	19.4	2	4.8	6.4	6.0	31.6
18-1	0.50	5.5	22	10	0	1	0.9	30.0	25.6	25	2	8.5	2	2.2	6.4	55.4	21.5
		T		-		Unn	amed Trik	butary to	Aptakisic (Creek @F	RM 4.6	-					
18-5	0.05	0.99	24	5	0	0	0	60.0	26.1	23	2	8.5	1	0.4	6.0	6.0	27
		•		-				Buffa	lo Creek							_	
17-5	14.0	1.37	25	7	0	0	0	71.4	23.7	20	2	17.1	1	0.4	6.8	2.0	59.7
17-3	7.70	9.61	15	9	0	0	0	66.7	49.6	31	2	9.4	3	34.7	5.7	3.5	11.2
17-2	6.10	22.1	18	10	0	0	2.7	40.0	50.8	32	4	13.6	6	7.5	6.0	2.1	15.8
17-1	0.75	29.14	25	12	1.55	0	0.6	41.7	30.8	25	1	19.8	2	1.0	6.5	3.0	33.6
	1						amed Tri	butary to	Buffalo Cr		Л 7.56						
17-4	0.68	8.55	8	4	0	0	0	75.0	31.2	24	2	6.0	3	1.7	5.7	4.6	14.5
	-	I I							n Creek							1	
15-9	10.8	2.68	19	9	0	0	0	44.4	22.7	18	1	15.0	2	2.8	6.8	3.2	30.4
15-6	9.83	3.7	22	10	0	0	0	40.0	23.2	26	2	14.0	1	0.3	6.8	3.2	32.1
15-5	5.40	17.26	25	11	0	0	1.2	45.5	39.4	31	2	4.7	2	3.1	5.3	0.3	6.6
15-2	2.41	35.02	38	17	0	1	27.3	35.3	46.8	38	4	12.5	2	7.2	6.3	7.2	21.6
15-1	0.17	36.43	34	14	0	2	20.4	35.7	53.5	39	5	8.7	6	23.3	6.0	12.5	14
45.44	0.02	47	20		0	-			ake Drain	24					5.4		4.0
15-11	0.83	1.7	20	8	0	0	0	62.5	22.0	21	1	5.7	1	1.8	5.4	1.8	1.8
15 10	E 20	2.00	17	9	0.25	0	0		er Creek	25		C7	4	0.2	EO		4.2
15-12	5.20	2.08	17	9 11	0.25	0	0	77.8	40.0	25 31	2	5.7		0.3	5.9	0.9	4.2
15-7	4.60	2.86	16	11	0	0	0	72.7	32.2	18	1	20.3	4	16.1	7.1	0.6	35
15-13	2.21	5.01 6.8	16 22	11	0	0	0	54.6	39.8 33.0	26	2	4.6 9.8	4	51.0	5.7	3.4 3.7	20.7 14.7
15-4	0.01	0.8	22	13	0	0		38.5 V Branch			1	9.8	4	2.5	5.9	3.7	14.7
15 10	0.90	2.22	12	2	0	0	0	V. Branch	Indian Cre	ек 14	1	27	0	0	ГО	10	11 2
15-10	0.80	2.22	12	2	0			-	18.1 olds (Yoder an		03)	3.7	0	0	5.8	1.0	11.2
	Good:		<u>></u> 41	5-6	0	5-6	5-6	5-6	<u>></u> 41.8	>70	>70	< 5	<u>></u> 4	>70	>70	<10	<30
	Fair:		>20<41	2-4	>0 - < 10	2-4	2-4	2-4	>20.9<41.8	40-69	40-69	5-10	3-4	40-69	40-69	<10<35	>30;<35
	Poor:		<u><</u> 20	0-1	<u>></u> 10	0-1	0-1	<u>></u> 70	<u><</u> 20.9	< 40	< 40	>10	<u><</u> 2	< 40	< 40	<u>></u> 35	<u>></u> 35

Figure 17. Illinois macroinvertebrate IBI scores for samples in the Year 1 tributary subwatersheds in 2016 and 2017 as shown as shaded box plots (upper panel) and as a scatter plot for individual sites by drainage area in 2016 and 2017(lower panel). IEPA thresholds for determining full support, non-support-fair, and non-support-poor of the General Use for aquatic life are indicated by dashed lines.

differences between 2016 and 2017 (Figure 16). Indian Creek was intermediate , but it had the highest scoring mIBI and highest total taxa of all sites in 2017 at downstream most site (15-1).

Aptakisic Creek is the most developed of the three 2017 year 1 subwatersheds. All four sites on Aptakisic Creek had fair mIBI scores with the three upstream most sites exhibiting a strong response to organic enrichment and the lower most site downstream of the LCPWD Des Plaines River WWTP exhibited the only toxic tolerant response in 2017 as it did in 2016 (MBI 2017). An unnamed tributary to Aptakisic Creek (Site 18-5) had a fair mIBI and an organic enrichment biological response signature with 38.1% organic tolerant taxa.

Biological Assemblages – Fish

Forty-four (44) fish species were collected along with three hybrids in the Year 1 subwatersheds in 2017. The assemblage was predominated by tolerant and moderately tolerant fish species (Table 13). Green sunfish, bluntnose minnow, bluegill, blackstripe topminnow, and creek chub were the most numerous species collected in 2017. Of the top 15 species seven are highly

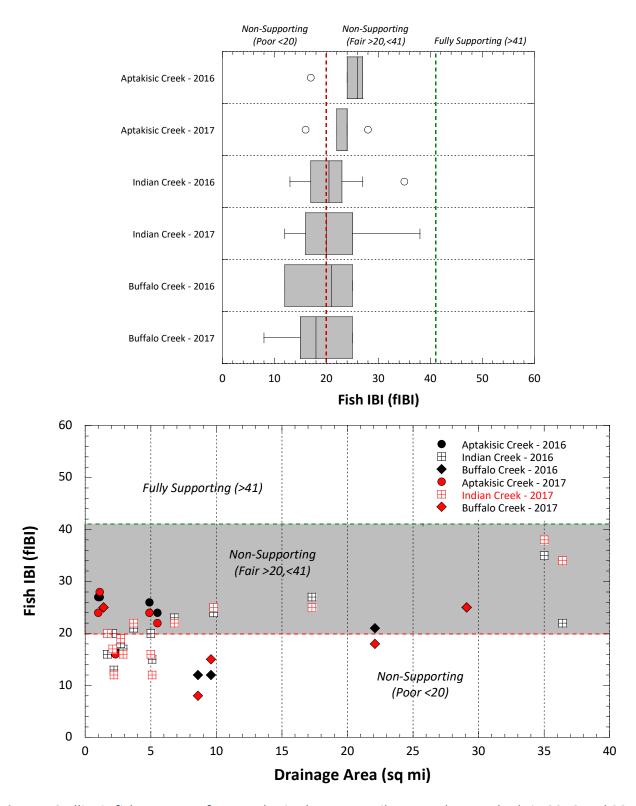

Species	Tole	rance	No. Collected	0/ Du Number	
Species	IL	ОН	No. Collected	% By Number	
Green Sunfish	Т	Т	2209	13.62	
Buntnose Minnow	Т	Т	1880	11.59	
Bluegill		Р	1869	11.52	
Blackstripe Topminnow			1765	10.88	
Creek Chub	Т	Т	1232	7.59	
Largemouth Bass			935	5.76	
Spotfin Shiner			884	5.45	
White Sucker	Т	Т	826	5.09	
Yellow Bullhead	Т	Т	626	3.86	
Central Mudminnow		Т	507	3.13	
Central Stoneroller			430	2.65	
Hornyhead Chub	I	I	356	2.19	
Johnny Darter			313	1.93	
Black Bullhead		Р	297	1.83	
Pumpkinseed		Р	261	1.61	

Table 13. The fifteen most abundant species collected in the Year 1 subwatersheds in 2017with IL and OH tolerance assignments, numbers collected, and percent collected bynumber (species with blank tolerance are intermediate).

I – intolerant; P – moderately tolerant; T – highly tolerant.

tolerant, three moderately tolerant, and only one (Hornyhead Chub) intolerant.

None of the 2017 fIBI scores met the General Use criterion of 41 although the lowermost two sites in Indian Creek came close with scores of 34 (15-1) and 38 (15-2), respectively which were the highest in the Year 1 survey (Table 13). Ten Of the 23 sites were in the poor range. For selected FIBI metrics, native species ranged from a low of 2 in the w. Branch of Indian Creek

Figure 18. Illinois fish IBI scores for samples in the Year 1 tributary subwatersheds in 2016 and 2017 as shown as shaded box plots (upper panel) and as a scatter plot for individual sites by drainage area in 2016 and 2017(lower panel). IEPA thresholds for determining full support, non-support-fair, and non-support-poor of the General Use for aquatic life are indicated by dashed lines.

(15-10) to 17 in lower Indian Creek (15-2). Mineral substrate spawners were absent at 15 of 23 sites and only in appreciable abundance at the lowermost two sites in Indian Creek. The proportion of tolerant species ranged from a low of 30% in the lowermost site in Aptakisic Creek (18-1) to a high of 77.8% at the upstream site in Kildeer Creek (15-12). DELT anomalies were detected at only 3 sites and in relatively low frequencies (0.25-1.55%). All except one fIBI value was in the fair range in Aptakisic Creek and one-half and more were in the poor range in Indian and Buffalo Creeks (Figure 17).

Indian Creek is the largest of the three Year 1 subwatersheds (38 sq. mi.) and fIBIs ranged from fair to poor (poor mostly at smaller sites). Streams sampled included Indian Creek, Kildeer Creek, West Fork of Indian Creek, Seavey Drainage Ditch and Forest Lake Drain. The fish assemblages were comprised mostly of tolerant species with the more sensitive hornyhead chub at several of the larger sites. Habitat ranged from fair to excellent; however, all sites had moderate to heavy siltation and heavily embedded substrates which is consistent with the dominance by tolerant fish species such as creek chub, white sucker, green sunfish and yellow bullhead. The urban land uses have undoubtedly have altered the natural flow regimes and that combined with the highly erodible soils contribute to the degraded substrate conditions throughout the subwatershed. Similar results were observed in the Buffalo Creek subwatershed.

The Aptakisic Creek fish assemblage supported fair fIBIs also dominated by tolerant fish species such as white sucker, creek chub, green sunfish, and yellow bullhead and a lack of sensitive species and mineral substrate spawners (i.e., simple lithophils). The lower most site is downstream from the LCPWD Des Plaines River WWTP. In 2016 native species richness declined upstream to downstream from 18 to 12 with a slight increase in DELT anomalies (0.5 to 1.1%) even though the fIBI only declined by 2 points (26 to 24). In 2017 the decline in native species richness was less (12 to 10) with no detection of DELT anomalies downstream.

SYNTHESIS

The baseline biological condition of the Year 1 subwatersheds has been shaped by the natural, low gradient and wetland-origins of the region. The current condition of the biological assemblages reflects changes that have altered these natural features mostly via hydrological and physical conversion resulting from urban development. The influence of altered hydrology, increased soil erosion, and habitat alterations were evident in the bioassessment results. The excessive siltation and embeddedness of substrates and channel modification were the most pervasive of the causes in 2016 these were likewise present in 2017.

New tools were applied in the 2017 Year 1 subwatershed assessment and included a more thorough analysis of the *effect* of nutrient enrichment and continuous monitoring to yield a more comprehensive characterization of the D.O. regime. Coupled with the chemical/physical assessment and the habitat and biological measures that were used in 2016, all were used in an integrated manner to assign associated causes to the biological impairments observed in 2017.

The biological criteria for fish and macroinvertebrates used by Illinois EPA (2018) establish the thresholds by which impaired sites and reaches are determined. The assignment of causes in this analysis generally followed the intent of the Illinois Integrated Report assessment guidelines, but was supplemented by more extensive biological effect thresholds derived by the DuPage River Salt Creek Integrated Prioritization System (IPS; Miltner et al. 2010), for southwestern Ohio (MBI 2015), and from the scientific literature (e.g., consensus-based sediment quality guidelines of MacDonald et al. 2000). Table 4 summarized the principal thresholds used in the assignment of causes for the 2017 bioassessment. It should be noted here that these are being used on an interim basis pending the development of region-specific thresholds for northeastern Illinois that is currently supported by both the DRWW and DRSCW.

The delineation of causes and sources was based on integrating and synthesizing the preceding analyses of categorical and parameter-specific stressor threshold exceedances. The most influential of these in 2017 are included in Table 14 along with the fish and macroinvertebrate IBI scores. Habitat alteration is represented by the QHEI and the QHEI modified:good attributes ratio, D.O. includes the minimum measured by grab sampling and Datasondes, the effect of nutrient enrichment by the diel D.O. swing narrative and the nutrient enrichment effect status, chemical threshold exceedances for water and sediment, and two biological response signatures, organic enrichment and toxic tolerant indicators. The rationale for listing a particular cause follows:

- Siltation (7 of 23 sites) any high influence *Silt/Muck Substrate* in the QHEI attributes matrix (Table 10).
- Channel modification (10 of 23 sites) any high influence *Channelized/No Recovery* or moderate influence *Recovering from Channelization* in the QHEI attributes matrix (Table 10).
- Shallow depth (5 of 23 sites) any *Maximum Depth <40 cm* in the QHEI attributes matrix (Table 10).
- Low D.O. (8 of 23 sites) any value <3.5 mg/L (Aug.- Feb.) or <5 mg/L (Mar.- Jul.) in Table 5 or 6; values <2 mg/L are considered nuisance levels.
- Nutrient Enrichment (14 of 23 sites) diel D.O. Swing narrative ratings of *High* or *Wide* and/or nutrient enrichment status of *Moderate, High, or Severe* as described in Table 6.
- Organic enrichment (7 of 23 sites) any organic enrichment *Biological Response* in Table 12 or a TKN value >1 mg/L (Table 7).
- Chloride/TDS (16 of 23 sites) any chloride value >biological effect threshold in Table 7 or conductivity >biological effect threshold in Table 7 in the absence of a chloride value.
- Metals (2 of 23 sites) any sediment *PEC or PEL* exceedance in Table 8.
- PAH (5 of 23 sites) any sediment *PEC or PEL* exceedance in Table 9.
- Toxicity (1 of 23 sites) any toxic *Biological Response* in Table 12.

Exceedances of the chloride threshold was the most pervasive cause occurring at 16 sites followed by nutrient enrichment (14 sites), channel modification (10 sites), low D.O. (8 sites), siltation and organic enrichment (7 sites), shallow depth and PAHs (5 sites), metals (2 sites), and

toxicity (1 site). Only three sources were assigned including urban runoff as the most pervasive source (20 of 23 sites) followed by habitat alteration (10 sites) and these co-occurred at seven (7) sites. The third source was the Lake Co. Des Plaines River WWTP at only one site, the downstream most location in Aptakisic Creek.

Table 14. Key chemical, physical, and biological response indicators of impairment observed at each site in the Year 1 subwatersheds study area in 2017. Proximate causes associated with biological impairments are drawn from exceedance and other analyses of habitat, nutrient effects, chemical threshold exceedances, sediment chemical exceedances, and biological response signatures. See footnotes for table references and biological, physical, and chemical threshold intervals.

Kilder Creek 15-12 5.2 2.08 17* 40.0* 41.5 2.33 7.9 na Normal na Cl F (77.8%) Siltation, Organic & Nutrient enrich. Habitat alteration, Urban runoff 15-7 4.6 2.86 16* 32.2* 48.5 1.50 1.9 0.8 Moderate None Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F Siltation, Low D.O., Nutrient enrich., Chloride Urban runoff 15-4																	
Note Note <th< th=""><th></th><th></th><th>Ducinosa</th><th></th><th></th><th></th><th>OHEL</th><th></th><th>Min DO</th><th></th><th>Nutrient</th><th>Chemical</th><th>Sediment</th><th>%Organic</th><th>%Toxic</th><th></th><th></th></th<>			Ducinosa				OHEL		Min DO		Nutrient	Chemical	Sediment	%Organic	%Toxic		
Step Mile (ag, m) Mile Mile <td></td> <td>D:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>D O Swing</td> <td></td> <td></td> <td></td> <td>Ŭ</td> <td></td> <td></td> <td></td>		D:							-	D O Swing				Ŭ			
Image: Second	Sito ID	-		fipi ¹	mIRI ²				1 · · ·	-	_					Brovimato Causos	Sourcos
184 4.7 1.09 28" 1.95 4.70 2.33 6.9 na na na Cod. Mn,Fe M (52.3%) Siltation, Chanel mod., Organic enrich., TDS, Metals (Mn,Fe) Habitat alteration, Urban rund 184 4.3 2.3 16" 28.2 55.5 4.50 4.20 na Multi ma Cl PAH(3) Channel mod., Nutrient enrich., Chloride, PAH(3) Habitat alteration, Urban rund 184 0.5 5.5 2.2" 2.6" Normal Normal None Cl M (52.3%) Channel mod., Nutrient enrich., Chloride, PAH(3) Habitat alteration, Urban rund 184 0.5 5.5 2.2" 2.6" Normal No Cl M (52.3%) Channel mod., Nutrient enrich., Chloride, Urban rundf Habitat alteration, Urban rundf M (59.7%); F Cl Siltation, Channel mod., Normal <	Site ID	white	(sq. m.)		шы	QHEI	GOOG RALIO			Narrative	Effect Status	exceedances			mulcators	Proximate Causes	Sources
133 4.3 2.3 67 9.28 5.5 4.90 4.2 na M.G na Cl PAH(3) Channel mod., Nutrient enrich., Chloride, PAH(3) Habitat alteration, Uban run 18-2 0.8 4.94 24* 24.0 4.00 3.4 2.1 Normal Normal Cl PAH(3) Channel mod., Nutrient enrich., Chloride, PAH(4) Habitat alteration, Uban run 18-1 0.5 5.2 2.2* 7.5 4.0 3.0 6.0 4.5 Moderate Cl, NN PAH(4) M(55.4%) Channel mod., Nutrient enrich., Chloride, PAH(3) Habitat alteration, Uban run Habitatateration, Uban run <td>10.4</td> <td colspan="12"></td>	10.4																
13:2 0.8 4.94 24 24.0° 8.50 4.00 3.4 2.1 Normal None Cl Moderate Cl, TKN M(59,7%); F Organic enrichment, Chloride Urban runoff 17.2 6.1 1.5* 4.6.3 1.50 0.1 6.2 High Moderate Cl, TKN M(19,7%); F Organic enrichment, Chloride Urban runoff 17.2 0.7.5 9.40 5.8 9.00 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>, -</td> <td>101 (32.3%)</td> <td></td> <td></td> <td></td>				_						-	-		, -	101 (32.3%)			
18-1 0.5 5.5 22* 25.6 48.0 3.50 6.0 4.5 Moderate High CI,TKN PAH(4) M (55.4%) Channel mod., Nutrient enrich., Chloride, Unk. Toxicity, PAH(4) Habitat alteration, Urban runoff, Unknammedf, Unknammedff, Unknammedff, Unknameff, Unknammedff, Unknameff, Unknammedff, Unk		-	-		-						-		PAR(5)				
IB-5 O.05 O.99 24* 2.1* B-5 Ommed Trib to Aptakisic Creek @RM 4.64 IB-5 0.05 0.99 24* 2.1* 4.8.5 0.000 3.5 na Normal na Cl Siltation, Channel mod., Chloride Urban runoff I7-5 14 1.37 25* 2.3.7* 6.3.0 0.86 4.0 na Normal na Cl, TKN M(59.7%); F Organic enrichment, Chloride Urban runoff 17-2 7.7 9.61 15* 4.6.5 3.00 6.6 7.2 Normal Low TKN Channel mod., Low D.0., Organic enrichment, Chloride Urban runoff 17-1 0.75 29.14 25* 30.8* 46.5 30.0 18 4.9 Wide Cl, TKN PAH(2) Siltation, Channel mod., Low D.0., Organic & Nutrient enrich., Chloride Urban runoff 17-1 0.75 29.14 25* 30.8* 18.45 30.0 6.1 Normal Moderate Cl, TKN PAH(2) Siltation, Channel mod., Low D.			-	-											NA/EE 40/)		,
18-5 0.05 0.99 24* 26.1* 43.5 10.00 3.5 na Normal na Cl Buffol Creak 17-5 14 1.37 25* 23.7* 63.0 0.86 4.0 na Cl, TKN M(59.7%); F Organic enrichment, Chloride Urban runoff 17-5 14 1.37 25* 23.7* 63.0 0.67 6.7.2 Normal Low TKN M(59.7%); F Organic enrichment, Chloride Urban runoff 17-2 6.1 22.1 18* 50.8 64.3 1.50 1.1 6.2 High Moderate Cl, TKN Cl, TKN Channel mod., Low D.O., Organic enrichment Urban runoff 17-1 0.75 23.14 25* 30.8* 4.55 900 1.8 4.9 Wate High Cl, TKN PAI(2) Silitation, Channel mod., Low D.O., Nutrient enrich., Chloride Urban runoff 17-1 0.75 23.14 4.55 900 1.8 0.62 Mide 0.7KN PAI(2) Silitation, Channel mod., Low D.O., Nutrient enrich., Chloride Urban runoff	18-1	0.5	5.5	22.	25.0	48.0	3.50	6.0	4.5	woderate	High	- /	()	akisic Crook @	· · · ·	Channel mod., Nutrient enrich., Chloride, Onk. Toxicity, PAH(4)	Habitat alteration, Orban runoit, WWTP
Image: Second	19 5	0.05	0.00	2/1*	26.1*	42 E	10.00	25		Normal					1111 4.04	Siltation Channel mod Chlorida	Urban runoff
17-5 14 1.37 25* 23.7 63.0 0.86 4.0 na Normal na Cl,TKN M(59.7%); F (71.4%) Organic enrichment, Chloride Urban runoff 17-3 7.7 9.61 15* 49.6 73.0 0.67 6.6 7.2 Normal Low TKN M(59.7%); F (71.4%) Organic enrichment, Chloride Urban runoff 17-2 6.1 22.1 12* 50.8 64.3 1.50 1.1 6.2 High Moderate Cl,TKN PAH(2) Siltation, Channel mod., Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 17-1 0.75 29.14 25* 30.8 46.5 9.00 1.8 4.9 Wide PAH(2) Siltation, Channel mod., Low D.O., Nutrient enrich., Chloride Urban runoff 17-4 0.68 8.55 8* 31.2* 57.5 2.00 3.2 6.1 Normal Low Cl,TKN PAH(2) Urban runoff 17-4 0.68 8.55 8* 31.2*	10-5	0.05	0.99	24	20.1	43.3	10.00	5.5	IId	NUTITAL	IId	Ci	Buffal	n Creek		Sittation, channel mod., chionde	OrbailTuiloff
17-5 14 1.37 25* 23.7* 63.0 0.85 4.0 na Normal na C,TKN (71.4%) Organic enrichment, Chloride Urban runoff 17-2 6.1 12* 4.0 7.7 9.61 12* 4.0 7.7 9.61 12* 4.5 50.8 64.3 1.50 1.1 6.2 High Moderate Cl,TKN PAH(2) Siltation, Channel mod., Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 17-1 0.75 29.14 25* 3.08* 4.6.5 9.00 1.8 4.9 Wide High C,TKN PAH(2) Siltation, Channel mod., Low D.O., Nutrient enrich., Chloride, PAH(2) Urban runoff 17-1 0.75 29.14 25* 5.5 1.20 1.8 Normal Moderate Cl,TKN PAH(2) Siltation, Channel mod., Low D.O., Nutrient enrich., Chloride Urban runoff 17-1 0.75 2.9.14 2.5* 5.5 1.20 1.8 na Moderate Cl,TKN PAH(2) Siltation, Channel mod., Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 17-5 <td></td> <td colspan="11"></td>																	
17:3 7.7 9.61 15* 49.6 73.0 0.67 6.6 7.2 Normal Low TKN Channel mod., Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 17:2 6.1 22.1 18* 50.8 64.3 1.50 11 6.2 High Moderate CJ,TKN Channel mod., Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 17:1 0.75 29.14 25* 30.8* 46.5 9.00 18 4.9 Wide High CJ,TKN PAH(2) Siltation, Channel mod., Low D.O., Nutrient enrich., Chloride Urban runoff 17:4 0.68 8.55 8* 31.2 5.7 2.00 3.2 6.1 Normal Moderate CJ,TKN PAH(2) Ibitation, Channel mod., Low D.O., Nutrient enrich., Chloride Urban runoff 17:4 0.68 8.55 8* 3.2 6.1 Normal Low CJ,TKN Edward EdwardEdward Edward </td <td>17-5</td> <td>14</td> <td>1.37</td> <td>25*</td> <td>23.7*</td> <td>63.0</td> <td>0.86</td> <td>4.0</td> <td>na</td> <td>Normal</td> <td>na</td> <td>CI,TKN</td> <td></td> <td></td> <td></td> <td>Organic enrichment, Chloride</td> <td>Urban runoff</td>	17-5	14	1.37	25*	23.7*	63.0	0.86	4.0	na	Normal	na	CI,TKN				Organic enrichment, Chloride	Urban runoff
17-1 0.75 29.14 25* 30.8* 46.5 9.00 1.8 4.9 Wide High Cl,TKN PAH(2) Siltation, Channel mod., Low D.O., Nutrient enrich., Chloride, PAH(2) Urban runoff 17-4 0.75 29.14 25* 30.8* 46.5 9.00 1.8 4.9 Wide High Cl,TKN PAH(2) Siltation, Channel mod., Low D.O., Nutrient enrich., Chloride, PAH(2) Urban runoff 17-1 0.75 2.8 1.2* 5.5. 2.00 3.2 6.1 Normal Moderate Cl,TKN Edward Low D.O., Nutrient enrich., Chloride Urban runoff 15-9 10.83 2.68 19* 2.7* 5.5.5 1.20 1.8 na Wide na Intervention Moderate Urban runoff 15-5 5.4 17.26 25* 3.9.4 66.5 1.00 4.8 4.8 Wide Moderate Intervention Shallow depth Nutrient enrich., Chloride, PAH(1) Urban runoff 15-5 5.4 17.26 25* 3.9.4 66.5 1.00 4.8 6.1 High	17-3	7.7	9.61	15*	49.6	73.0	0.67	6.6	7.2	Normal	Low	TKN		(Organic enrichment	Urban runoff
Image: 1-4 Image: 1-4 <thimage: 1-4<="" th=""> Image: 1-4 Image: 1</thimage:>	17-2	6.1	22.1	18*	50.8	64.3	1.50	1.1	6.2	High	Moderate	CI,TKN				Channel mod., Low D.O., Organic & Nutrient enrich., Chloride	Urban runoff
17-4 0.68 8.55 8* 31.2* 57.5 2.00 3.2 6.1 Normal Moderate Cl,TKN Description Low D.O., Nutrient enrich., Chloride Urban runoff 15-9 10.83 2.68 19* 2.7* 55.5 1.20 1.8 na Wide na Indian Creek 15-9 10.83 2.68 19* 2.2.* 55.5 1.20 1.8 na Wide na Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-5 5.4 17.26 25* 39.4 66.5 1.00 4.8 4.8 Wide Moderate Moderate Nutrient enrich. Nutrient enrich. Urban runoff 15-2 5.4 17.26 25* 39.4 66.5 1.00 4.8 4.8 Wide Moderate Cl,TKN PAH(1) Nutrient enrich. Urban runoff 15-2 5.4 17.6 65.5 0.07 4.8 6.1 High Severe Cl,TKN PAH(1) Nutrient enrich. Urban runoff 15-12 5.2	17-1	0.75	29.14	25*	30.8*	46.5	9.00	1.8	4.9	Wide	High	CI,TKN	PAH(2)			Siltation, Channel mod., Low D.O., Nutrient enrich., Chloride, PAH(2)	Urban runoff
Indian Creek 15-9 10.83 2.68 19* 22.7* 55.5 1.20 1.8 na Wide na Indian Creek 15-6 9.83 3.7 22* 23.2* 59.5 2.33 4.2 4.7 Normal Low Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-6 9.83 3.7 22* 23.2* 59.5 2.33 4.2 4.7 Normal Low Shallow depth Shallow depth Habitat atteration 15-5 5.4 17.26 25* 39.4 66.5 1.00 4.8 4.8 Wide Moderate Nutrient enrich. Urban runoff 15-2 2.41 35.00 38* 46.8 73.0 0.67 4.8 6.1 High Severe CI,TKN PAH(1) Urban runoff 15-1 0.17 36.43 34* 5.35 6.50 2.33 6.1 5.4 High Moderate CI,TKN PAH(1) Urban																	
15-9 10.83 2.68 19* 22.7* 55.5 1.20 1.8 na Wide na Low Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-6 9.83 3.7 22* 23.2* 59.5 2.33 4.2 4.7 Normal Low Image: Comparison of the compariso	17-4	0.68	8.55	<u>8</u> *	31.2*	57.5	2.00	3.2	6.1	Normal	Moderate	CI,TKN				Low D.O., Nutrient enrich., Chloride	Urban runoff
15-6 9.83 3.7 22* 23.2* 59.5 2.33 4.2 4.7 Normal Low Image: Constraint of the constrant of the constraint of the constraint of the constrant																	
15-5 5.4 17.26 25* 39.4 66.5 1.00 4.8 4.8 Wide Moderate Image: Cl_TKN PAH(1) Mutrient enrich. Mutrient enrich. Cl_TKN PAH(1) Mutrient enrich. Mutrient enrich. Cl_TKN PAH(1) Mutrient enrich.	15-9	10.83	2.68	<u>19</u> *	22.7*	55.5	1.20	1.8	na	Wide	na					Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride	Urban runoff
15-2 2.41 35.02 38* 46.8 73.0 0.67 4.8 6.1 High Severe Cl,TKN PAH(1) Mutrient enrich., Chloride, PAH(1) Urban runoff 15-1 0.17 36.43 34* 53.5 65.0 2.33 6.1 5.4 High Moderate Cl,TKN PAH(1) Mutrient enrich., Chloride, PAH(1) Habitat alteration, Urban runoff 15-17 36.43 34* 53.5 65.0 2.33 6.1 5.4 High Moderate Cl,TKN PAH(1) Mutrient enrich., Chloride, PAH(1) Urban runoff 15-17 36.43 34* 53.5 65.0 2.33 6.1 5.4 High Moderate Cl,TKN PAH(1) Mutrient enrich., Chloride, PAH(1) Habitat alteration, Urban runoff 15-17 5.2 2.08 17^{*} 40.0* 48.5 7.30 None Cl F (77.8%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-47 4.6 16^{*} $32.*$ 48.5 1.50 1.9 0.8 $0.0e$ Cl $N(35.\%); F / 72$	15-6	9.83	3.7	22*	23.2*	59.5	2.33	4.2	4.7	Normal	Low					Shallow depth	Habitat alteration
15-1 0.17 36.43 34* 53.5 65.0 2.33 6.1 5.4 High Moderate CI, TKN Channel mod., Nutrient enrich. Habitat alteration, Urban rund 15-12 5.2 2.08 17* 40.0* 41.5 2.33 7.9 na Normal na Cl F (77.8%) Siltation, Organic & Nutrient enrich. Habitat alteration, Urban rund 15-7 4.6 2.86 16* 32.2* 48.5 1.50 1.9 0.8 Moderate None Cl F (77.8%) Siltation, Organic & Nutrient enrich. Habitat alteration, Urban runoff 15-7 4.6 2.86 16* 32.2* 48.5 1.50 1.9 0.8 Moderate None Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-4 0.01 6.8 22* 33.0* 53.5<	15-5	5.4	17.26	25*	39.4	66.5	1.00	4.8	4.8	Wide	Moderate					Nutrient enrich.	Urban runoff
Kilder Creck 15-12 5.2 2.08 17* 40.0* 41.5 2.33 7.9 na Normal na Cl F (77.8%) Siltation, Organic & Nutrient enrich. Habitat alteration, Urban runoff 15-7 4.6 2.86 16* 32.2* 48.5 1.50 1.9 0.8 Moderate None Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-4 0.01 6.8 22* 33.0* 5.35 1.50 4.1 High Moderate Cl M Siltation, Low D.O., Nutrient enrich., Chloride Urban runoff	15-2	2.41	35.02	38*	46.8	73.0	0.67	4.8	6.1	High	Severe	CI,TKN	PAH(1)			Nutrient enrich., Chloride, PAH(1)	Urban runoff
15-12 5.2 2.08 17^* 40.0* 41.5 2.33 7.9 na Normal na Cl F (77.8%) Siltation, Organic & Nutrient enrich. Habitat alteration, Urban runoff 15-7 4.6 2.86 16^* 32.2* 48.5 1.50 1.9 0.8 Moderate None Cl $M(35.0\%); F \\ 72.7\%$ Shallow depth, Low D.O., Organic & Nutrient enrich. Chloride Urban runoff 15-13 2.21 5.01 16^* 39.8* 61.0 0.83 5.4 na Normal na Cl $M(35.0\%); F \\ 72.7\%$ Shallow depth, Low D.O., Organic & Nutrient enrich. Chloride Urban runoff 15-4 0.01 6.8 22* 33.0* 5.4 na Normal na Cl M Shallow depth, Low D.O., Nutrient enrich. Chloride Urban runoff 15-4 0.01 6.8 22* 33.0* 5.5 1.50 4.7 4.1 High Moderate Cl Siltation, Low D.O., Nutrient enrich., Chloride Urban runoff	15-1	0.17	36.43	34*	53.5	65.0	2.33	6.1	5.4	High	Moderate	CI,TKN				Channel mod., Nutrient enrich.	Habitat alteration, Urban runoff
15-7 4.6 2.86 16* 32.2* 48.5 1.50 1.9 0.8 Moderate None Cl M (35.0%); F 72.7% Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F 72.7% Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl M (35.0%); F 72.7% Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-4 0.01 6.8 22* 33.0* 53.5 1.50 4.7 4.1 High Moderate Cl M (35.0%); F Siltation, Low D.O., Nutrient enrich., Chloride Urban runoff																	
15-7 4.6 2.86 16* 32.2* 48.5 1.50 1.9 0.8 Moderate None Cl 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl 72.7%) Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-13 2.21 5.01 16* 39.8* 61.0 0.83 5.4 na Normal na Cl Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride Urban runoff 15-4 0.01 6.8 22* 33.0* 53.5 1.50 4.7 4.1 High Moderate Cl Shallow depth, Low D.O., Nutrient enrich., Chloride Urban runoff 15-4 0.01 6.8 22* 33.0* 53.5 1.50 4.7 4.1 High Moderate Cl Siltation, Low D.O., Nutrient enrich., Chloride Urban runoff	15-12	5.2	2.08	<u>17</u> *	40.0*	41.5	2.33	7.9	na	Normal	na	Cl		F (77.8%)		Siltation, Organic & Nutrient enrich.	Habitat alteration, Urban runoff
15-4 0.01 6.8 22* 33.0* 53.5 1.50 4.7 4.1 High Moderate Cl Siltation, Low D.O., Nutrient enrich., Chloride Urban runoff	15-7	4.6	2.86	<u>16</u> *	32.2*	48.5	1.50	1.9	0.8	Moderate	None	Cl				Shallow depth, Low D.O., Organic & Nutrient enrich., Chloride	Urban runoff
	15-13	2.21	5.01	16*	39.8*	61.0	0.83	5.4	na	Normal	na	Cl				Chloride, Metals (As, Fe)	Urban runoff
	15-4	0.01	6.8	22*	33.0*	53.5	1.50	4.7	4.1	High	Moderate	Cl				Siltation, Low D.O., Nutrient enrich., Chloride	Urban runoff
West Branch Indian Creek																	
15-10 0.8 2.22 <u>12*</u> <u>18.1*</u> <u>58.5</u> <u>1.50</u> <u>5.4</u> na <u>Normal</u> na <u>Habitat alteration</u>	15-10	0.8	2.22	<u>12</u> *	<u>18.1</u> *	58.5	1.50	5.4	na	Normal	na					Shallow depth	Habitat alteration
Seavey Drainage Ditch																	
15-3 3.66 5.05 12* 17.5* 62.0 1.40 5.8 6.8 High Moderate Cl Urban runoff	15-3	3.66	5.05				-		6.8	High	Moderate	Cl				Nutrient enrich., Chloride	Urban runoff
15-8 0.45 9.77 25* 30.6* 55.0 2.33 5.5 2.8 Wide High Cl PAH(1) M (46.5%) Channel mod., Low D.O., Organic & Nut. enrich., Chloride, PAH(1) Habitat alteration, Urban rund	15-8	0.45	9.77	25*	30.6*	55.0	2.33	5.5	2.8	Wide	High	Cl	PAH(1)	M (46.5%)		Channel mod., Low D.O., Organic & Nut. enrich., Chloride, PAH(1)	Habitat alteration, Urban runoff
Forest Lake Drain																	
15-11 0.83 1.7 20* 22.0* 48.3 4.00 6.5 na Normal na Siltation, Shallow depth, Channel mod. Habitat alteration	15-11	0.83	1.7	20*	22.0*	48.3	4.00	6.5	na	Normal	na					Siltation, Shallow depth, Channel mod.	Habitat alteration

¹ fIBI: full support <u>>41</u>; nonsupport-fair <u>>20<41</u>; nonsupport-fair <u>>20.9</u>, ² mIBI: full support +fair >20.9; Extremely elevated ratio >6.0

⁴ From Table 5: exceedance of 3.5 mg/L minimum (Aug.- Feb.); exceedance of 5.0 mg/l minimum (Mar.- Jul.); <2 mg/L nuisance level.⁵ From Table 6: exceedance of 3.5 mg/l minimum Aug.-Feb.) only.⁶ From Table 6: Normal (<2 mg/L); Low (<4 mg/L); Moderate (<5 mg/L); High (>5 mg/L); Wide (>6.5 mg/L). ⁷ See Table 6 for assignments - only made for sites with diel D.O. and benthic chlorophyll a data.⁸ Water column chemical threshold exceedances in Table 7 (Cond. - conductivity; Cl - chloride; TKN total Kjeldahl nitrogen).

⁹ Sediment metal ad organic exceedences of PEC/PEL or IEPA Elevated levels in Tables 8 and 9 (PAH - polycyclic aromatic hydrocarbons with numer of compounds).¹⁰ Biological response signatures for organic enrichment - see Table 12 (M - macoinvertebrates; F - fish).

¹¹ Biological response signatures for general toxicity - see Table 12 (M - macoinvertebrates; F - fish).

REFERENCES

- Allan, J.D. 2004. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Review of Ecology, Evolution, and Systematics. Vol. 35:257-284.
- Bertrand, B. 1984. Des Plaines River Basin fisheries assessment. Illinois Dept. of Conservation, Div. of Fish and Wildlife Resources, Northern Streams Program. 100-11-84. 44 pp.
- Bilger, E.E., M.J. Dreslik, and C.A. Phillips. 2016. Biotic integrity of macroinvertebrate communities along the Illinois routes 53 & 120 corridor. ITHA RR-14-4228. Prairie Research Institute, Illinois Natural History Survey. Champaign, IL. 27 pp.
- Bland, J.K., K. Paap, and P. Willink. 2016. Summary Report on Baseline Fish for Seavey Ditch and Indian Creek, Sullivan Woods, Vernon Hills Park District, Vernon Hills, Illinois.
- Bland, J.K., K. Paap, and P. Willink. 2015.
- Bland, J.K. 2013. How do you spell success? The rare fish variety, that is. Part I: Grading success in rearing threatened and endangered species. American Currents 38(4): 11-22.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. NOAA OR&R Report 08-1, National Oceanographic and Atmospheric Administration (NOAA), Office of Response and Restoration Division, Seattle, WA. 34 pp.
- Day, D. M. 1991. The Des Plaines River: Monitoring the Fish Resources of an Urban River (1978-1991) Streams Program, Illinois Department of Conservation, Aledo, IL.
- Des Plaines River Watershed Workgroup (DRWW). 2018. 2018 Monitoring Strategy for the Des Plaines River Watershed. Lake County, IL. DRWW, 500 W. Winchester Rd., Libertyville, IL. 7 pp. <u>http://www.drww.org/plans/reports</u>.
- Des Plaines River Watershed Workgroup (DRWW). 2016. Quality Assurance Project Plan: Bioassessment of the Des Plaines River Watershed. Lake County, IL. DRWW, 500 W. Winchester Rd., Libertyville, IL. 53 pp. + appendices.
- Douglas, S.A., M.J. Dreslik, and C.A. Phillips. 2016. Illinois route 53/120 mollusk surveys. ITHA RR-14-4228. Prairie Research Institute, Illinois Natural History Survey. Champaign, IL. 29 pp.
- Healy, R. W. 1979. River mileages and drainage areas for Illinois streams- Volume 1, Illinois except Illinois River Basin. U.S. Geological Survey, Water Resources Investigations 79-110.

- Heidinger, R. C.1989. Fishes in the Illinois portion of the upper Des Plaines River. Transactions of the Illinois Academy of Science 82: 85-96.
- Illinois DNR. 2010a. Rivers and Streams Fisheries Data Set: Fish Collection Procedures (Electrofishing). Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 2 pp.
- Illinois DNR. 2010b. Rivers and Streams Fisheries Data Set: Field Sampling Protocols For Rivers and Streams. Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 9 pp.
- Illinois EPA. 2018. Illinois Integrated Water Quality Report and Section 303(d) List, 2018 (Draft). Clean Water Act Sections 303(d), 305(b) and 314. Water Resource Assessment Information and List of Impaired Waters. Volume I: Surface Water. Bureau of Water, Springfield, IL. 109 pp.
- Illinois EPA. 2014a. Illinois Water Monitoring Strategy 2015-2020. Bureau of Water. Springfield, IL. 138 pp.
- Illinois EPA. 2012a. Surface Water Section. Standard Operating Procedure for Stream Water Quality Sample Monitoring. Document Control No. 184. IEPA BOW SOP012-01-0512. Revision No. 1. 16 pp.
- Illinois EPA. 2011a. Standard Operating Procedure for Calibration and Use of Hydrolab MiniSonde 5. Surface Water Section, Document Control No. 180. IEPA BOW SOP010-00-1111. Revision No. 0. Springfield, IL. 8 pp.
- Illinois EPA. 2011b. Standard Operating Procedure for Surficial Sediment Collection. Surface Water Section. Document Control No. 174. IEPA BOW SOP008-00-1111. Revision No. 0. 8 pp.
- Illinois EPA. 2011c. Standard Operating Procedure for Method to Collect Aquatic Macroinvertebrates from Wadeable Streams for Biotic Integrity Assessments. Surface Water Section. Document Control No. 168. IEPA BOW SOP002-00-1111. Revision No. 0. 8 pp.
- Illinois EPA. 2011d. Methods Utilized to Determine the Types and Amounts of Pertinent Macroinvertebrate Habitats in Perennial Wadeable Streams for 20-Jab Allocation. Surface Water Section. Document Control No. 177. IEPA BOW ID003-00-1111. Revision No. 0. 6 pp.
- Illinois EPA. 2011e. Standard Operating Procedure for Sample Processing for the Macroinvertebrate Index of Biotic Integrity (mIBI). Surface Water Section. Document Control No. 167. IEPA BOW SOP001-00-1111. Revision No. 0. 14 pp.

- Illinois EPA. 2011f. Macroinvertebrate Tolerance List and Functional Feeding Group Classification. Surface Water Section. Document Control No. 176. IEPA BOW ID002-00-1111. Revision No. 0. 75 pp.
- Illinois EPA. 2011g. Genus-List: Macroinvertebrate-Index of Biotic Integrity (m-IBI) Tolerance List and Functional Feeding Group Classification. Surface Water Section. Document Control No. 178. IEPA BOW ID004-00-1111. Revision No. 0. 31 pp.
- Illinois DNR. 2010a. Rivers and Streams Fisheries Data Set: Fish Collection Procedures (Electrofishing). Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 2 pp.
- Illinois DNR. 2010b. Rivers and Streams Fisheries Data Set: Field Sampling Protocols For Rivers and Streams. Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 9 pp.
- Illinois EPA. 2006. Recommendations for Illinois EPA users on how to interpret or record information relevant to scoring the Qualitative Habitat Evaluation Index. Surface Water Section, Springfield, IL. 8 pp.

Illinois Nutrient Stream Advisory Committee (NSAC). 2018.

- Karr, J.R. and C.O. Yoder. 2004. Biological assessment and criteria improve TMDL planning and decision-making. Journal of Environmental Engineering 130(6): 594-604.
- Kaushal, S.S., Groffman, P.M., Likens, G.E., Belt, K.T., Stack, W.P., Kelly, V.R., Band, L.E., and Fisher, G.T. 2005. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. 102(38):13517-13520.
- Kelly, W.R., S.V. Panno, and K. Hackley. 2012. The Sources, Distribution, and Trends of Chloride in the Waters of Illinois. Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign.
- Kelly, W.R. 2008. Long-term trends in chloride concentrations in shallow aquifers near Chicago. Ground Water. 46(5):772-781.
- Lake Co. Stormwater Management Commission (LCSMC). 2018. Des Plaines River Watershed Based Plan. Lake Co. Stormwater Management Commission, 500 W Winchester Road, Libertyville, Illinois 60048. 552 pp. + appendices.
- Langbein, J. R. and H. L. Wright. 1976. Inventory of the fishes of the Des Plaines River Basin for 1974. Illinois Department of Conservation, 37 pp.

- MacDonald, R.S., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environmental Contamination and Toxicology 39: 20-31 (2000).
- Midwest Biodiversity Institute (MBI). 2017. Biological and Water Quality Assessment of the Upper Des Plaines River and Tributaries 2016. Lake County, Illinois. Technical Report MBI/2017-8-7. Columbus, OH 43221-0561. 101 pp. + appendices.
- Midwest Biodiversity Institute (MBI). 2015. Integrated Prioritization System (IPS) Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio. Technical Report MBI/2015-12-15. MSD Project Number 10180900. Columbus, OH 43221-0561. 32 pp. + appendices. <u>www.midwestbiodiversityinst.org/publications/</u>
- Miltner, R.J. 2018. Eutrophication endpoints for large rivers in Ohio, USA. Environ. Monit. Assess. 190: 55
- Miltner, R.J., R.F. Mueller, C.O. Yoder, and E.T. Rankin. 2010. Priority rankings based on estimated restorability for stream segments in the DuPage River and Salt Creek watersheds. Technical Report MBI/2010-11-6. Report to the DuPage River Salt Creek Working Group, Naperville, IL. 63 pp. (available at <u>http://drscw.org/wp/projectidentification-and-prioritization-system/</u>).
- Miltner, R.J., D.S. White, and C.O. Yoder. 2004. The biotic integrity of streams in urban and suburbanizing landscapes. Landscape and Urban Planning. 69 (2004): 87-100.
- Muench, B. 1968. Upper Illinois Tributaries and Des Plaines. In: A. C. Lopinot, editor. Inventory of Nine River Basins in Illinois 1967. Illinois Department of Conservation Special Fisheries Report No. 25.
- Novotny E.V., D. Murphy, and H.G. Stefan. 2008. Increase of urban lake salinity by road deicing salt. Science Total Environ. 406(1-2):131-144.
- Ohio Environmental Protection Agency. 2015a. Biological criteria for the protection of aquatic life (revised June 26, 2015). Volume III: Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Tech. Rept. EAS/2015-06-01. Division of Surface Water, Ecological Assessment Section, Columbus, Ohio. 66 pp. <u>https://www.epa.ohio.gov/dsw/bioassess/BioCriteriaProtAqLife</u>.
- Ohio EPA. 2015b. Draft Ohio Draft Stream Nutrient Assessment Procedure (SNAP). Division of Surface Water, Columbus, OH. Nutrients_TAG_Recommendations_12-4-2015_GO4-FinalDraft - 4828-0819-7931.1.pdf. <u>http://epa.ohio.gov/dsw/wqs/NutrientReduction.aspx#146064467-tag</u>.

- Ohio Environmental Protection Agency. 2006. Methods for assessing habitat in flowing waters: using the qualitative habitat evaluation index (QHEI). Division of Surface Water, Ecological Assessment Section, Columbus, OH. 23 pp.
- Ohio EPA. 1999. Association between nutrients, habitat, and the aquatic biota in Ohio Rivers and streams. Ohio EPA Technical Bulletin MAS/1999-1-1. Jan. 7, 1999.
- Ohio Environmental Protection Agency. 1996. Ohio EPA's guide to DELT anomalies (deformities, erosions, lesions, and tumors). Division of Surface Water, Ecological Assessment Section, Columbus, OH. 19 pp.
- Ontario Ministry of the Environment. 1993.
- Page, L. M., H. Espinosa-Pérez, L. T. Findley, C. R. Gilbert, R. N. Lea, N. E. Mandrak, R. L., Mayden, and J. S. Nelson. 2013. Common and scientific names of fishes from the United States, Canada, and Mexico, 7th edition. American Fisheries Society, Special Publication 34, Bethesda, Maryland. 384 pp.
- Pescitelli, S. 2016. Status of fish assemblages and sport fishery in the Des Plaines River Watershed and trends over 30 years of Basin Surveys 1983 – 2013. Illinois DNR, Office of Resource Conservation, Division of Fisheries 5931 Fox River Drive, Plano, IL 60545.
- Pescitelli S. M. and R. C. Rung. 2010a. Establishing a successful urban fishery: Sauger stocking program in the Des Plaines River. 48th Annual Meeting of the Illinois Chapter of the American Fisheries Society, Utica, IL.
- Pescitelli S. M. and R. C. Rung. 2010b. Evaluation of the Des Plaines River Ecosystem Restoration Project: Summary of Pre-project Fish Sampling 1998 – 2010. Illinois Department of Natural Resources, Division of Fisheries Streams Program, Plano, IL.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pages 181-208. *in* W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E.T. 1989. The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application. Ohio EPA, Division of Water Quality Planning and Assessment, Ecological Analysis Section, Columbus, Ohio.
- Sanders, R. S., R. J. Miltner, C. O. Yoder, and E. T. Rankin. 1999. The use of external deformities, erosions, lesions, and tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: a case study of seven Ohio streams, pages 225-248. in T.P. Simon (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL.

- Sherwood, J.L., A.J. Stites, J.S. Tiemann, C.A. Phillips, and M.J. Dreslik. 2016. Updated assessment of stream fishes in the Illinois route 53 & 120 corridor. ITHA RR-14-4228.
 Prairie Research Institute, Illinois Natural History Survey. Champaign, IL. 31 pp.
- Short, M.B. 1998. Evaluation of Illinois sieved stream sediment data, 1982-1995. Staff report prepared by Matthew B. Short. [Springfield, Ill.] : State of Illinois, Illinois Environmental Protection Agency, Division of Water Pollution Control, Planning Section, Springfield Monitoring Unit. Smith, P.W. 1979. The fishes of Illinois. University of Illinois Press, Champaign, IL. 314 pp.
- Slawski, T. M., F. M. Veraldi, S. M. Pescitelli, and M. J. Pauers. 2008. Effects of Tributary Spatial Position, Urbanization and Multiple Low Head Structures on Warmwater Fish Community Structure in a Midwestern Stream. North American Journal of Fisheries Management 28: 1020-1035.
- Smith, P. 1979. The fishes of Illinois. Univ. Illinois Press, Urbana, IL. 314 pp.
- Smogor, R. 2005. Draft manual for Interpreting Illinois Fish-IBI Scores. Prepared for: Illinois Environmental Protection Agency. 26 pp.
- Smogor, R. 2000. Draft Manual for Calculating Index of Biotic Integrity Scores for Streams in Illinois, August 2000. Prepared for: Illinois Environmental Protection Agency and Illinois Department of Natural Resources. 23 pp.
- Steffeck, D.W. and R. G. Streigl. 1989. An inventory and evaluation of biological investigations that relate to stream water quality in the upper Illinois river basin of Indiana, Illinois, and Wisconsin. U.S. Geological Survey Water-Resources Investigation Report 89-4041. 54 pp.
- U.S. EPA (Environmental Protection Agency). 2012. 2012 Recreational Water Quality Criteria. Office of Water EPA - 820-F-12-061, 4305T, December 2012. Washington D.C.
- U.S. EPA (Environmental Protection Agency). 2011. A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams. Office of Research and Development, National Center for Environmental Assessment, Washington, DC. EPA/600/R-10/023F. 276 pp.
- U.S. Environmental Protection Agency. (2008). Gulf Hypoxia Action Plan. <u>https://www.epa.gov/sites/production/files/2015-</u> <u>03/documents/2008 8 28 msbasin ghap2008 update082608.pdf</u>

- U.S. EPA (Environmental Protection Agency). 1995a. Environmental indicators of water quality in the United States. EPA 841-R-96-002. Office of Water, Washington, DC 20460. 25 pp.
- U.S. EPA (Environmental Protection Agency). 1995b. A conceptual framework to support development and use of environmental information in decision-making. EPA 239-R-95-012. Office of Policy, Planning, and Evaluation, Washington, DC 20460. 43 pp.
- Woods, A., J.M. Omernik, C.S. Brockman, T.D. Gerber, W.D. Hosteter, and S.H. Azevedo. 1995. Ecoregions of Ohio and Indiana. U.S. EPA, Corvallis, OR. 2 pp.
- Yoder, C.O., R.J. Miltner, and D.S. White. 2000. Using biological criteria to assess and classify urban streams and develop improved landscape indicators, pp. 32-44. Proceedings of the National Conference on Tools for Urban Water Resource Management and Protection. Offc. Res. And Dev., Cincinnati, OH. EPA/625/R-00/001.
- Yoder, C.O. and E.T. Rankin. 1998. The role of biological indicators in a state water quality management process. J. Env. Mon. Assess. 51(1-2): 61-88.
- Yoder, C.O. and E.T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multimetric data, pages 263-286. *in* W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- YSI Incorporated. 2012. 6-Series Multiparameter Water Quality Sondes User Manual. 6-Series:
 6600 V2, 6600EDS V2, 6920 V2, 6820 V2, 600 OMS V2, 600XL, 600XLM, 600LS, 600R, and
 600QS. Environmental Monitoring Systems Operations Manual. Item # 069300, Revision
 J. Yellow Springs, OH. 379 pp.
- YSI Incorporated. 2017. EXO User Manual. Item# 603789REF, Revision G. Yellow Springs. OH. 154 pp.

APPENDIX A

A-1: Upper Des Plaines Year 1 2017 Sites and Indicators

				Drainage		Datasonde/								
	River			Area		Benthic								
Site ID	Mile	Latitude	Longitude	(sq. mi.)	Chemical	Chl.a	Habitat	Biological	Sampling Location					
	1		1			Apta	kisic Creek (95-70	-						
18-4	4.7	42.18122	-87.96678	1.09	F		QHEI	MH, FHW	N. Buffalo Grove Rd. (Twin Creeks)					
18-3	4.3	42.17702	-87.95915		F, C, N, O, B, S		QHEI	,	Copperwood Dr. bike crossing					
18-2	0.8	42.16468		4.94	F, C, N, O, B, S	х	QHEI		Pekara Rd, West of Hwy. 21					
18-1	0.5	42.16349	-87.92245	5.50	F, C, N, O, B, S	х	QHEI	,	Aspen Road					
		-	1	1	Unnd	med Trib to A	ptakisic Creek @ F	1						
18-5	0.05	42.18153	-87.96576	0.99	F, C, N, B		QHEI		Dst. Aptakisic Rd.; W of N. Buffalo Grove Rd., Twins Creek Park					
						Bufj	falo Creek (95-703)						
17-5	14	42.18589	-88.05815	1.37	F, C, N, B		QHEI	MH, FHW	Quentin Rd.					
17-3	7.7	42.1596	-87.99056	9.61	F, C, N, O, B, S	х	QHEI	MH, FHW	Checker Road					
17-2 6.1 42.15216 -87.96938 22.1 F, C, N, O, B, S X QHEI MH, FWD Lake Cook Rd @ Farington Ditch 17-1 0.75 42.12671 -87.96935 29.1 F, C, N, O, B, S X QHEI MH, FWD Lake Cook Rd @ Farington Ditch														
17-1 0.75 42.12671 -87.90835 29.1 F, C, N, O, B, S X QHEI MH, FWD Plum Creek Drive (Wolf Dr.)														
Unnamed Tributary to Buffalo Creek @ RM 7.56 (95-713)														
17-4														
						Ind	ian Creek (95-706)	ĺ						
15-9	10.8	42.24454	-88.03565	2.68	F, C, N, O, B, S		QHEI	MH, FHW	N. Midlothian Rd.					
15-6	9.83	42.23809	-88.02246	3.70	F, C, N, O, B, S	х	QHEI	MH, FHW	Washitay Ave					
15-5	5.4	42.21088	-87.98597	17.3	F, C, N, O, B, S	Х	QHEI	MH, FHW	Oakwood Rd.					
15-2	2.41	42.20629	-87.96123	35.0	F, C, N, O, B, S	х	QHEI	MH, FWD	Sullivan Woods Preserve, North of Creekview Dr.					
15-1	0.17	42.1981	-87.92312	36.4	F, C, N, O, B, S	х	QHEI	MH, FWD	Marriot Inn parking lot - adj. Cranes Landing GC					
						Kild	leer Creek (95-707))						
15-12	5.2	42.19621	-88.03919	2.08	F, C, N, B,		QHEI	MH, FHW	IL Rt. 22					
15-7	4.6	42.19297	-88.02905	2.86	F, C, N, O, B, S	х	QHEI	MH, FHW	Salem Lake Drive S. of Rt. 22					
15-13	2.21	42.19357	-88.0023	5.01	F, C, N, B		QHEI	MH, FHW	Willowbrook Rd. S. of Half Day Rd.					
15-4	0.01	42.20552	-87.97467	6.80	F, C, N, O, B, S	Х	QHEI	MH, FHW	Port Clinton Rd at Killdeer Creek					
						West Brar	nch Indian Creek (95-717)						
15-10	0.8	42.23022	-88.0377	2.22	F, C, N, B		QHEI	MH, FHW	Gilmer Rd.					
						Seavey L	Drainage Ditch (95	-390)						
15-3	3.66	42.26345	-87.96553	5.05	F, C, N, O, B, S	Х	QHEI	MH, FHW	Gregg's Parkway					
15-8	0.45	42.21546	-87.96697	9.77	F, C, N, O, B, S	x	QHEI	MH, FHW	Vernon Hills GC - hole number 3					
						Fores	t Lake Drain (95-70	05)						
15-11	0.83	42.21958	-88.0257	1.70	F, C, N, B		QHEI	MH, FHW	Hawthorne Grove Rd.					
Chemical C	odes: F	- Field; C –	Conventional	(DO, pH, etc	c.,); N – Nutrients; O ·	– Organics; B – B	acteria; S – Sedimen	t samples (m	etals, organics, pesticides, PCBs, PAHs).					
					Headwater: EWD – E				,					

Biological Codes: MH – IEPA multihabitat; FHW – Fish, Headwater; FWD – Fish, Wadeable.

APPENDIX B

Upper Des Plaines Year 1 2017 Fish Assemblage Data

B-1: Fish Index of Biotic Integrity (IBI) Metrics & Scores
B-2: Fish Species Grand (all sites combined)
B-3: Fish Species by Sampling Event

								Nu	imber of				Perc	cent				
Site ID	River Mile	Type Date	DA sq mi	Wetted Width (ft)	IL IBI Reg.	Native species	Sunfish species	Sucker			Minnow species	Mineral Substrate Spawners		Generalist Feeders	Specialized Benthic Invert- ivores	Rel.No. /(0.3km)	N IBI	/lodified
	SEAV	EY DRAINA	GE DIT	ГСН - (95	390)													
Year	: 2017																	
15-3	3.66	F 08/24/2017	5.0) 25.7	3	5(1)	4(6)	0(0)	0(0)	0(0)	0(0)	0(0)	40(4)	95(1)	0(0)	260	12.0	4.8
15-8	0.45	E 08/23/2017	9.7	37.7	3	14(3)	3(4)	1(1)	1(1)	2(2)	5(3)	12(2)	43(4)	80(3)	4(2)	698	25.0	7.2
	APTA	KISIC CREE	K - (95	701)														
Year	: 2017																	
18-4	4.70	F 08/24/2017	1.0) 1.1 [×]	3	4(6)	3(6)	0(0)	0(0)	0(0)	1(6)	0(0)	50(4)	55(6)	0(0)	130 *	28.0	4.4
18-3	4.30	F 08/24/2017	2.3	8 11.0	3	5(1)	3(6)	0(0)	0(0)	0(0)	2(1)	0(0)	60(3)	67(5)	0(0)	126 *	16.0	4.5
18-2	0.80	E 08/23/2017	4.9	24.9	3	12(3)	4(6)	1(2)	0(0)	2(2)	2(1)	1(1)	42(4)	69(4)	2(1)	522	24.0	6.9
18-1	0.50	D 08/25/2017	5.5	5 27.0	3	10(2)	3(5)	1(2)	1(1)	3(2)	0(0)	1(1)	30(5)	85(2)	3(2)	506	22.0	6.2
	BUFF	ALO CREEK	- (9570)3)														
Year	: 2017																	
17-5	14.00	F 08/22/2017	1.3	3 1. 9	3	7(6)	3(6)	1(6)	0(0)	0(0)	2(4)	0(0)	71(2)	98(1)	0(0)	754	25.0	5.6
17-3	7.70	F 08/24/2017	9.6	5 37.3	3	9(2)	3(4)	1(1)	0(0)	0(0)	3(2)	0(0)	67(3)	76(3)	0(0)	326	15.0	5.6
17-2	6.10	E 08/23/2017	22.1	52.6	3	10(2)	4(5)	0(0)	0(0)	1(1)	3(2)	3(1)	40(4)	81(3)	0(0)	520	18.0	6.7
17-1	0.75	E 08/23/2017	29.1	57.6	3	12(2)	3(4)	1(1)	0(0)	3(2)	2(2)	1(1)	42(4)	72(4)	14(5)	646	25.0	5.9
	FORE	ST LAKE DR	AIN - ((95705)														
Year	: 2017																	
15-11	0.83	F 08/22/2017	1.7	5. 3 ×	3	8(3)	3(6)	0(0)	0(0)	0(0)	3(2)	0(0)	63(3)	54(6)	0(0)	78 *	20.0	5.4
	INDIA	N CREEK - (95706)															

Appendix Table B-1. Fish IBI results for data collected in the Des Plaines River study area during 2017.

na - Qualitative data, Modified Iwb not applicable.

X - IBI extrapolated

* - < 200 Total individuals in sample

** - < 50 Total individuals in sample

• - One or more species excluded from IBI calculation.

08/09/2018

									Nu	mber of				Per	cent				
Site ID	River Mile	Туре	Date		Wetted Width (ft)	IL IBI Reg.	Native species			Intolerant species		Minnow species	Mineral Substrate Spawners	Tolerant Fish (as Species)	Generalist Feeders	Specialized Benthic Invert- ivores	Rel.No. /(0.3km)		/lodifie Iwb
Year	: 2017																		
15-9	10.83	F 08	/22/2017	2.6	14.0	3	9(2)	4(6)	0(0)	0(0)	0(0)	2(1)	0(0)	44(4)	42(6)	0(0)	442	19.0	6.1
15-6	9.83	F 08	/22/2017	3.7	19.8	3	10(2)	4(6)	0(0)	0(0)	1(1)	2(1)	0(0)	40(4)	70(4)	10(4)	504	22.0	6.2
15-5	5.40	E 08	/25/2017	17.2	48.1	3	11(2)	4(5)	1(1)	0(0)	2(2)	2(2)	1(1)	45(4)	74(4)	11(4)	332	25.0	6.0
15-2	2.41	D 10	/25/2017	35.0	61.0	3	17(4)	5(6)	1(1)	1(1)	3(2)	5(3)	27(4)	35(5)	40(6)	29(6)	840	38.0	7.8
15-1	0.17	D 08	/25/2017	36.4	61.8	3	14(3)	4(5)	1(1)	2(2)	2(2)	5(3)	20(3)	36(4)	63(5)	18(6)	522	34.0	7.4
	KILDI	EER C	REEK -	(95707	')														
Year	: 2017																		
5-12	5.20	F 08	/24/2017	2.0	9. 4	3	9(2)	3(6)	1(3)	0(0)	0(0)	3(2)	0(0)	78(2)	92(2)	0(0)	820	17.0	6.3
15-7	4.60	F 08	/22/2017	2.8	15.3	3	11(3)	3(6)	1(2)	0(0)	0(0)	4(2)	0(0)	73(2)	94(1)	0(0)	672	16.0	6.9
5-13	2.21	F 08	/24/2017	5.0	25.3	3	11(2)	4(6)	1(2)	0(0)	0(0)	2(1)	0(0)	55(3)	90(2)	0(0)	626	16.0	6.8
15-4	0.01	F 08	/23/2017	6.8	30.9	3	13(3)	4(6)	1(2)	0(0)	1(1)	2(2)	0(0)	38(4)	83(3)	0(1)	482	22.0	6.7
	UNNA	MED	TRIB T	О АРТ	AKISIC	CREE	K - (9571	2)											
Year	: 2017																		
18-5	0.05	F 08	/24/2017	0.9	1.1 [×]	3	5(6)	3(6)	0(0)	0(0)	0(0)	2(6)	0(0)	60(3)	83(3)	0(0)	48 * *	24.0	4.0
	UT TC) BUF	FALO C	REEK	@ RM X	X.X -	(95713)												
Year	: 2017																		
17-4	0.68	E 08	/23/2017	8.5	35.3	3	4(1)	2(3)	0(0)	0(0)	0(0)	1(1)	0(0)	75(2)	97(1)	0(0)	374	8.00	5.2
	W. BR	ANCH	H INDIA	N CRE	EEK - (95	717)													
Year	: 2017																		
5-10	0.80	F 08	/22/2017	2.2	10.2	3	2(0)	2(5)	0(0)	0(0)	0(0)	0(0)	0(0)	0(6)	99(1)	0(0)	216	12.0	3.0
		va data	, Modifie	d Iwh n	otapplicat	Ja				B - 2								9/2018	_

Appendix Table B-1. Fish IBI results for data collected in the Des Plaines River study area during 2017.

• - One or more species excluded from IBI calculation.

Appendix 6-2: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Seavey Drainage Ditch; Aptakisic Creek; Buffalo Creek; Forest Lake Drain; Indian Creek; Kildeer Creek; Unnamed Trib to Aptakisic Creek; Buffalo Creek Tributary; W. Branch Indian Creek

Years: 2017

Numbe	er of Samples: 23	I	Data Sou	rces:		99		Data Ty	pes:	D; E; F	
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		8	0.7	0.14	22	0.48	33.7
34-001	CENTRAL MUDMINNOW	I I	т	C		2	0.2	0.04	0	0.01	2.5
37-003	NORTHERN PIKE	P	·	M	F	2	0.2	0.04	146	3.13	880.0
40-016	WHITE SUCKER	0	т	S	W	121	10.0	2.19	285	6.10	28.3
43-001	COMMON CARP	0	Т	М	G	37	3.1	0.67	116	2.49	37.8
43-003	GOLDEN SHINER	-	Т	М	N	57	4.7	1.03	31	0.67	6.6
43-004	HORNYHEAD CHUB	I	I	Ν	Ν	131	10.9	2.37	111	2.38	10.2
43-013	CREEK CHUB	G	т	Ν	Ν	580	48.1	10.48	795	17.02	16.5
43-034	SAND SHINER	I	М	М	Ν	2	0.2	0.04	0	0.01	2.0
43-042	FATHEAD MINNOW	0	т	С	Ν	15	1.3	0.27	3	0.07	2.6
43-043	BLUNTNOSE MINNOW	0	т	С	Ν	418	34.7	7.55	89	1.91	2.5
43-044	CENTRAL STONEROLLER	н		Ν	Ν	91	7.6	1.64	48	1.03	6.3
43-117	CARMINE SHINER	I	I	S	Ν	2	0.2	0.04	0	0.01	2.0
47-002	CHANNEL CATFISH			С	F	3	0.3	0.05	1	0.02	4.0
47-004	YELLOW BULLHEAD	I	Т	С		274	22.7	4.95	559	11.96	24.5
47-006	BLACK BULLHEAD	I	Р	С		19	1.6	0.34	83	1.78	52.8
47-008	STONECAT MADTOM	I	Ι	С		7	0.6	0.13	4	0.11	8.5
47-013	TADPOLE MADTOM	I		С		1	0.1	0.02	0	0.02	10.0
54-002	BLACKSTRIPE TOPMINNOW	I		М		178	14.8	3.22	18	0.40	1.2
77-003	ROCK BASS	С		С	S	8	0.7	0.14	21	0.46	32.5
77-006	LARGEMOUTH BASS	С		С	F	480	39.8	8.68	387	8.29	9.7
77-007	WARMOUTH SUNFISH	С		С	S	2	0.2	0.04	2	0.06	17.5
77-008	GREEN SUNFISH	I	Т	С	S	1208	100.3	21.83	844	18.06	8.4
77-009	BLUEGILL SUNFISH	I	Р	С	S	1486	123.3	26.86	971	20.79	7.8
77-010	ORANGESPOTTED SUNFISH	I		С	S	1	0.1	0.02	0	0.02	10.0
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	8	0.7	0.14	11	0.26	18.0
77-015	GREEN SF X BLUEGILL SF					33	2.7	0.60	53	1.15	19.5
77-016	GREEN SF X PUMPKINSEED					1	0.1	0.02	0	0.01	5.0
80-003	YELLOW PERCH			М		11	0.9	0.20	9	0.20	10.0
80-005	BLACKSIDE DARTER	I		S	D	48	4.0	0.87	23	0.50	5.9
80-011	LOGPERCH	I	М	S	D	1	0.1	0.02	0	0.02	10.0
80-014	JOHNNY DARTER	I		С	D	297	24.7	5.37	27	0.59	1.1
80-021	IOWA DARTER	I		Μ	D	1	0.1	0.02	0	0.00	2.0
No Spec	ies: 33 Nat. Species:	30	Hybrids	: 2		Total Counte	ed:	5533 To	tal Rel. W	/t. :	4673

Site ID:	15-8	River	: 95-390	Seavey Drai	nage Ditch		RM:	0.45	Date	: 08/23/2017	
Time Fish	ed:	1105	Distance:	0.150	Drainge (sq mi):	9	9.7	Dept	h:	0	
Location:	Verno	on Hills G	C - hole nur	mber 3		Lat:	42.2	1546 L	_ong:	-87.96697	

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
34-001	CENTRAL MUDMINNOW		T	C	Gloup	2	4.0	0.57	10	0.13	2.5
40-016	WHITE SUCKER	0	т	S	W	24	48.0	6.88	1160	14.80	24.1
43-004	HORNYHEAD CHUB	I	I	Ν	Ν	10	20.0	2.87	480	6.12	24.0
43-013	CREEK CHUB	G	т	Ν	Ν	99	198.0	28.37	2960	37.76	14.9
43-042	FATHEAD MINNOW	0	т	С	Ν	1	2.0	0.29	4	0.05	2.0
43-043	BLUNTNOSE MINNOW	0	т	С	Ν	49	98.0	14.04	440	5.61	4.4
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	29	58.0	8.31	400	5.10	6.9
47-004	YELLOW BULLHEAD	I	т	С		27	54.0	7.74	600	7.66	11.1
54-002	BLACKSTRIPE TOPMINNOW	I		М		2	4.0	0.57	4	0.05	1.0
77-006	LARGEMOUTH BASS	С		С	F	13	26.0	3.72	140	1.79	5.3
77-008	GREEN SUNFISH	I	т	С	S	18	36.0	5.16	600	7.66	16.6
77-009	BLUEGILL SUNFISH	I	Р	С	S	60	120.0	17.19	980	12.50	8.1
80-005	BLACKSIDE DARTER	I		S	D	2	4.0	0.57	20	0.26	5.0
80-014	JOHNNY DARTER	I		С	D	13	26.0	3.72	40	0.51	1.5
No Spec	ies: 14 Nat. Species:	14	Hybrids	: 0		Total Co	unted:	349 To	tal Rel. W	't.:	7838

IBI:

30.0

N/A

MIwb:

04/01/2019

		Арре	ndix Tab			dwest pecies		versity	Instit	ute		
Site	ID: 15-3	River:	95-390 Se	eavey Dra	+			RM	: 3.66	Date:	08/24/20)17
Time	Fished:	900	Distance:	0.150	Dr	ainge (s	q mi):	5.0	Dej	oth:	0	
Loca	tion: Grego	j's Parkway	1					Lat: 42	.26345	Long:	-87.9655	53
Species Code:		ies Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
47-004	YELLOW E	BULLHEAD	I	Т	С		1	2.0	0.77	8	0.28	4.0
77-006	LARGEMC	UTH BASS	С		С	F	5	10.0	3.85	1760	60.73	176.0
77-007	WARMOU [®]	TH SUNFISH	I C		С	S	1	2.0	0.77	30	1.04	15.0
77-008	GREEN SI	JNFISH	I	Т	С	S	53	106.0	40.77	400	13.80	3.7
77-009	BLUEGILL	SUNFISH	I	Р	С	S	70	140.0	53.85	700	24.15	5.0
No Spe IBI:	ecies: 5 30.0	Nat. Spe Mlwb:	cies: 5 N/A	Hybrids	: 0		Total C	ounted:	130 T	lotal Rel. V	Vt. :	2898

Site ID:	18-1	River	: 95-701	Aptakisic Cr	eek		RM:	0.50	Da	ate: 08/25/2017
Time Fishe	ed:	1675	Distance:	0.200	Drainge (sq mi):	Ę	5.5	Dep	th:	0
Location:	Asper	n Road				Lat:	42.1	6349	Long	: -87.92248

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	9	13.5	2.67	2640	22.63	195.5
47-004	YELLOW BULLHEAD	I	Т	С		28	42.0	8.31	2685	23.02	63.9
47-006	BLACK BULLHEAD	I	Р	С		1	1.5	0.30	6	0.05	4.0
54-002	BLACKSTRIPE TOPMINNOW	I		Μ		14	21.0	4.15	15	0.13	0.7
77-006	LARGEMOUTH BASS	С		С	F	19	28.5	5.64	105	0.90	3.6
77-008	GREEN SUNFISH	Ι	Т	С	S	134	201.0	39.76	3165	27.13	15.7
77-009	BLUEGILL SUNFISH	I	Р	С	S	113	169.5	33.53	2790	23.92	16.4
77-015	GREEN SF X BLUEGILL SF					8	12.0	2.37	210	1.80	17.5
80-005	BLACKSIDE DARTER	Ι		S	D	3	4.5	0.89	30	0.26	6.6
80-014	JOHNNY DARTER	I		С	D	7	10.5	2.08	15	0.13	1.4
80-021	IOWA DARTER	Ι		Μ	D	1	1.5	0.30	3	0.03	2.0
No Spec	ies: 10 Nat. Species:	10	Hybrids	1		Total Co	unted:	337 T o	otal Rel. W	't.:	11664

IBI: 34.0 **MIwb:**

: N/A

Site ID:	18-2	River	95-701	Aptakisic Cr	eek		RM:	0.80	D	ate: 08/23/2017
Time Fishe	ed:	1130	Distance:	0.150	Drainge (sq mi):	4	1.9	Dep	th:	0
Location:	Pekar	a Rd, We	st of Hwy. 2	21		Lat:	42.1	6468	Long	g: -87.92781

Species Code:	Species Name:	Feed		Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	Species Name.	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	Wt.
40-016	WHITE SUCKER	0	Т	S	W	12	24.0	4.60	2750	29.51	114.5
43-003	GOLDEN SHINER	I	Т	Μ	Ν	24	48.0	9.20	500	5.37	10.4
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	90	180.0	34.48	460	4.94	2.5
47-004	YELLOW BULLHEAD	I	Т	С		22	44.0	8.43	1720	18.46	39.0
47-006	BLACK BULLHEAD	I	Р	С		7	14.0	2.68	880	9.44	62.8
54-002	BLACKSTRIPE TOPMINNOW	I		М		6	12.0	2.30	20	0.21	1.6
77-006	LARGEMOUTH BASS	С		С	F	66	132.0	25.29	1000	10.73	7.5
77-008	GREEN SUNFISH	I	Т	С	S	25	50.0	9.58	700	7.51	14.0
77-009	BLUEGILL SUNFISH	Ι	Р	С	S	1	2.0	0.38	980	10.52	490.0
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	1	2.0	0.38	100	1.07	50.0
77-015	GREEN SF X BLUEGILL SF					2	4.0	0.77	170	1.82	42.5
80-005	BLACKSIDE DARTER	I		S	D	2	4.0	0.77	30	0.32	7.5
80-014	JOHNNY DARTER	I		С	D	3	6.0	1.15	8	0.09	1.3
No Spec	ies: 12 Nat. Species:	12	Hybrids	: 1		Total Co	unted:	261 To	tal Rel. W	′t. :	9318
-	28.0 Miwb: N/A	\	-								

Site I	D: 18	8-3	River: 9	95-701	Aptakisic	Creek				RM:	4.30	Date:	08/24/20 ⁻	17
Time	Fished:		772	Distance:	0.150) Dr	ainge (s	q mi):		2.3	Dep	oth:	0	
Locat	ion: Co	opper	wood Dr.	bike xing					Lat:	42.	17702	Long:	-87.9591	5
Species Code:		Specie	s Name:	Feed Guild		Breed Guild	IBI Group	No Fisl			% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-013	CREE	K CHL	JB	G	Т	Ν	N		2	4.0	3.17	360	26.09	90.0
43-043	BLUN	TNOSI	E MINNOW	0	Т	С	Ν		5 1	0.0	7.94	30	2.17	3.0
77-006	LARG	EMOU	TH BASS	С		С	F	2	.1 4	2.0	33.33	330	23.91	7.8
77-008	GREE	N SUN	NFISH	I	Т	С	S	3	616	2.0	49.21	560	40.58	9.0
77-009	BLUE	GILL S	UNFISH	I	Р	С	S		4	8.0	6.35	100	7.25	12.5
No Spe	cies: 5		Nat. Spec	: ies: 5	Hybrids	s: 0		Total (Counte	ed:	63 T	otal Rel. V	Vt. :	1380
IBI:	26.0		MIwb:	N/A										

Site ID: 18-4	River	: 95-701 A	ptakisic Cr	eek	I	RM: 4.70	Da	te: 08/24/2017
Time Fished:	711	Distance:	0.150	Drainge (sq mi):	1	.0 De	epth:	0
Location: N. Bu	uffalo Gro	ve Rd. (Twin	Creeks Par	k)	Lat:	42.18122	Long:	-87.96678

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-013	CREEK CHUB	G	Т	Ν	N	3	6.0	4.62	360	37.50	60.0
77-006	LARGEMOUTH BASS	С		С	F	28	56.0	43.08	180	18.75	3.2
77-008	GREEN SUNFISH	I	Т	С	S	27	54.0	41.54	340	35.42	6.3
77-009	BLUEGILL SUNFISH	I	Р	С	S	6	12.0	9.23	40	4.17	3.3
77-015	GREEN SF X BLUEGILL SF					1	2.0	1.54	40	4.17	20.0
No Spec	ties: 4 Nat. Species:	4	Hybrids	: 1		Total Cou	unted:	65 To	tal Rel. W	't.:	960
IBI:	32.0 Miwb: N//	Ą									

Site ID:	17-1	River	: 95-703	Buffalo Cree	ek	RM	1: 0.75	Date: 08/23/201	7
Time Fishe	ed:	1297	Distance:	0.150	Drainge (sq mi):	29.1	Dept	n: 0	
Location:	Plum	Creek Dr	ive (Wolf D	r)		Lat: 4	2.12671 L	ong: -87.90835	5

Species Code:		Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	Species Name:	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	Wt.
40-016	WHITE SUCKER	0	Т	S	W	1	2.0	0.31	20	0.45	10.0
43-013	CREEK CHUB	G	Т	Ν	Ν	5	10.0	1.55	220	4.90	22.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	3	6.0	0.93	20	0.45	3.3
47-002	CHANNEL CATFISH			С	F	1	2.0	0.31	4	0.09	2.0
47-004	YELLOW BULLHEAD	I	т	С		53	106.0	16.41	1600	35.60	15.0
47-013	TADPOLE MADTOM	Ι		С		1	2.0	0.31	20	0.45	10.0
54-002	BLACKSTRIPE TOPMINNOW	Ι		Μ		24	48.0	7.43	100	2.23	2.0
77-006	LARGEMOUTH BASS	С		С	F	19	38.0	5.88	220	4.90	5.7
77-008	GREEN SUNFISH	Ι	Т	С	S	141	282.0	43.65	1920	42.72	6.8
77-009	BLUEGILL SUNFISH	I	Р	С	S	29	58.0	8.98	200	4.45	3.4
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.31	20	0.45	10.0
80-005	BLACKSIDE DARTER	Ι		S	D	2	4.0	0.62	30	0.67	7.5
80-014	JOHNNY DARTER	I		С	D	43	86.0	13.31	120	2.67	1.4
No Spec	cies: 12 Nat. Species:	12	Hybrids	: 1		Total Co	unted:	323 To	tal Rel. W	't. :	4494
IBI:	32.0 Miwb: 5.9)									

Site ID:	17-2	River	: 95-703	Buffalo Cree	ek	RM:	6.10	Date: 08/23/2017
Time Fishe	ed:	1199	Distance:	0.150	Drainge (sq mi):	22.1	Depth	: 0
Location:	Lake	Cook Rd	@ Farington	n Ditch		Lat: 42	.15216 Lo	ong: -87.96938

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-013	CREEK CHUB	G	Т	Ν	Ν	50	100.0	19.23	3680	35.93	36.8
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	13	26.0	5.00	80	0.78	3.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	7	14.0	2.69	240	2.34	17.1
47-004	YELLOW BULLHEAD	Ι	Т	С		34	68.0	13.08	2300	22.46	33.8
47-008	STONECAT MADTOM	I	I	С		7	14.0	2.69	400	3.91	28.5
54-002	BLACKSTRIPE TOPMINNOW	I		Μ		1	2.0	0.38	2	0.02	1.0
77-006	LARGEMOUTH BASS	С		С	F	32	64.0	12.31	620	6.05	9.6
77-008	GREEN SUNFISH	Ι	Т	С	S	56	112.0	21.54	1620	15.82	14.4
77-009	BLUEGILL SUNFISH	I	Р	С	S	58	116.0	22.31	1230	12.01	10.6
77-010	ORANGESPOTTED SUNFISH	Ι		С	S	1	2.0	0.38	20	0.20	10.0
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.38	50	0.49	25.0
No Spec	ies: 10 Nat. Species:	10	Hybrids	: 1		Total Co	unted:	260 To	tal Rel. W	/t. :	10242

IBI: 34.0 **MIwb:**

6.7

Site ID: 17-3	River: 95	5-703 Buf	falo Creel	k		RM: 7.70	Date	e: 08/24/2017
Time Fished:	886 E	Distance:	0.150	Drainge (sq mi):	Q	9.6 De	pth:	0
Location: Check	ker Road				Lat:	42.15960	Long:	-87.99056
Species					_			

Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	2	4.0	1.23	20	0.40	5.0
43-013	CREEK CHUB	G	Т	Ν	Ν	68	136.0	41.72	2360	47.73	17.3
43-042	FATHEAD MINNOW	0	Т	С	Ν	1	2.0	0.61	4	0.08	2.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	13	26.0	7.98	40	0.81	1.5
47-004	YELLOW BULLHEAD	I	Т	С		9	18.0	5.52	820	16.59	45.5
54-002	BLACKSTRIPE TOPMINNOW	I		М		24	48.0	14.72	40	0.81	0.8
77-006	LARGEMOUTH BASS	С		С	F	14	28.0	8.59	560	11.33	20.0
77-008	GREEN SUNFISH	I	Т	С	S	16	32.0	9.82	440	8.90	13.7
77-009	BLUEGILL SUNFISH	I	Р	С	S	15	30.0	9.20	580	11.73	19.3
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.61	80	1.62	40.0
No Spec	•	9	Hybrids	: 1		Total Co	unted:	163 To	tal Rel. W	/t. :	4944
IBI: 2	24.0 Miwb: N/A	٩									

	Appendix	Tab			dwest pecies		versi	ty I	nstitu	ute		
Site	ID: 17-5 River: 95-703	3 B	uffalo Cre					RM:	14.00	Date:	08/22/20	17
Time	Fished: 733 Dista	nce:	0.150	Dr	ainge (so	ղ mi)։		1.3	Dep	oth:	0	
Loca	tion: Quentin Rd.						Lat:	42.7	18589	Long:	-88.0581	5
Species Code:	S Species Name:	Feed Guild		Breed Guild	IBI Group	No Fisł			% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W		3	5.0	0.80	220	2.66	36.6
43-001	COMMON CARP	0	Т	М	G		1 :	2.0	0.27	400	4.84	200.0
43-013	CREEK CHUB	G	Т	Ν	Ν	17	3 34	5.0	45.89	4260	51.51	12.3
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	2	0 4	0.0	5.31	120	1.45	3.0
47-006	BLACK BULLHEAD	Ι	Р	С			6 12	2.0	1.59	700	8.46	58.3
77-006	LARGEMOUTH BASS	С		С	F		2	4.0	0.53	140	1.69	35.0
77-008	GREEN SUNFISH	I	Т	С	S	8	6 17	2.0	22.81	1680	20.31	9.7
77-009	BLUEGILL SUNFISH	Ι	Р	С	S	8	1 16	2.0	21.49	700	8.46	4.3
77-015	GREEN SF X BLUEGILL SF						4	3.0	1.06	40	0.48	5.0
77-016	GREEN SF X PUMPKINSEED						1 :	2.0	0.27	10	0.12	5.0
No Spe IBI:	ecies: 8 Nat. Species: 32.0 Miwb: N/A	7	Hybrids:	2		Total (Counte	d:	377 T	otal Rel. V	Vt. :	8270

Site IE): 15-11	River: 95-705	5 F	orest La	ke Drai	in			RM:	0.83	Date:	08/22/201	7
Time I	Fished:	497 Dista	nce:	0.150) Dr	ainge (s	q mi):		1.7	Dep	oth:	0	
Locati	on: Hawth	orne Grove Rd.						L	at: 42	.21958	Long:	-88.02570	
Species													
Code:	Specie	es Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group		lo. sh	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-003	GOLDEN SH	HINER		Т	M	N		7	14.0	17.95	40	12.82	2.8
43-013	CREEK CHU	JB	G	Т	Ν	Ν		2	4.0	5.13	20	6.41	5.0
43-043	BLUNTNOS	E MINNOW	0	т	С	Ν		1	2.0	2.56	8	2.56	4.0
47-004	YELLOW BL	JLLHEAD	I	Т	С			1	2.0	2.56	16	5.13	8.0
54-002	BLACKSTRI	PE TOPMINNOW	I		М			13	26.0	33.33	30	9.62	1.1
77-006	LARGEMOL	JTH BASS	С		С	F		5	10.0	12.82	60	19.23	6.0
77-008	GREEN SUN	NFISH	I	Т	С	S		7	14.0	17.95	118	37.82	8.4
77-009	BLUEGILL S	SUNFISH	Ι	Р	С	S		3	6.0	7.69	20	6.41	3.3

Total Counted:

Total Rel. Wt. :

312

39

No Species:8Nat. Species:8Hybrids:0IBI:36.0Miwb:N/A

04/01/2019

Site ID:	15-1	River	: 95-706	Indian Creek		RM	: 0.17	Date: 08/25/2017	
Time Fishe	ed:	1419	Distance	: 0.200	Drainge (sq mi):	36.4	Depth	ר: 0	
Location:	Marrie	ot Inn pa	rking lot - a	adj. Cranes La	nding GC	Lat: 42	2.19810 L	ong: -87.92312	

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	00000	T	Sulla	W		7 10.5	-	3082	27.43	293.5
43-004	HORNYHEAD CHUB	-	I	N	N	38		-	1170	10.41	20.5
43-013	CREEK CHUB	G	т	Ν	N	Į	5 7.5		30	0.27	4.0
43-034	SAND SHINER	I	М	М	Ν		2 3.0	0.57	6	0.05	2.0
43-043	BLUNTNOSE MINNOW	0	т	С	Ν	1:	3 19.5	5 3.74	22	0.20	1.1
43-117	CARMINE SHINER	I	I	S	Ν		2 3.0	0.57	6	0.05	2.0
47-004	YELLOW BULLHEAD	I	т	С		23	3 34.5	6.61	1935	17.22	56.0
54-002	BLACKSTRIPE TOPMINNOW	I		М		-	7 10.5	5 2.01	15	0.13	1.4
77-003	ROCK BASS	С		С	S	-	7 10.5	5 2.01	840	7.47	80.0
77-006	LARGEMOUTH BASS	С		С	F	Q	9 13.5	5 2.59	622	5.54	46.1
77-008	GREEN SUNFISH	I	т	С	S	12	5 187.5	5 35.92	2550	22.69	13.6
77-009	BLUEGILL SUNFISH	I	Р	С	S	4	5 67.5	5 12.93	615	5.47	9.1
77-015	GREEN SF X BLUEGILL SF						2 3.0	0.57	90	0.80	30.0
80-005	BLACKSIDE DARTER	I		S	D	24	4 36.0	6.90	210	1.87	5.8
80-014	JOHNNY DARTER	L		С	D	39	9 58.5	5 11.21	45	0.40	0.7

No Species: 14

Nat. Species:

7.4

14 Hybrids: 1

Total Counted: 348 **Total Rel. Wt. :** 11239

IBI: 34.0 MIwb:

Site ID:	15-2	River	: 95-706	Indian Creek		I	RM:	2.41	Da	ate: 10/25/2017
Time Fished	d:	2297	Distance	: 0.200	Drainge (sq mi):	35	5.0	Dep	oth:	0
Location:	Sulliva	an Wood	s Preserve,	North of Cree	ekview Dr.	Lat:	42.2	0629	Long	: -87.96123

No Spec	ies: 17 Nat. Species:	17	Hybrids	: 1		Total Co	unted	560 To	tal Rel. W	't.:	13305
80-014	JOHNNY DARTER	I		С	D	148	222.0	26.43	210	1.58	0.9
80-011	LOGPERCH	I	Μ	S	D	1	1.5	0.18	15	0.11	10.0
80-005	BLACKSIDE DARTER	I		S	D	13	19.5	2.32	120	0.90	6.1
77-015	GREEN SF X BLUEGILL SF					1	1.5	0.18	120	0.90	80.0
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	1	1.5	0.18	30	0.23	20.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	49	73.5	8.75	960	7.22	13.0
77-008	GREEN SUNFISH	I	Т	С	S	27	40.5	4.82	510	3.83	12.5
77-006	LARGEMOUTH BASS	С		С	F	15	22.5	2.68	300	2.25	13.3
77-003	ROCK BASS	С		С	S	1	1.5	0.18	45	0.34	30.0
54-002	BLACKSTRIPE TOPMINNOW	I		Μ		15	22.5	2.68	30	0.23	1.3
47-004	YELLOW BULLHEAD	I	Т	С		12	18.0	2.14	315	2.37	17.5
43-044	CENTRAL STONEROLLER	н		Ν	Ν	55	82.5	9.82	390	2.93	4.7
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	51	76.5	9.11	90	0.68	1.1
43-042	FATHEAD MINNOW	0	Т	С	Ν	7	10.5	1.25	30	0.23	2.8
43-013	CREEK CHUB	G	Т	Ν	Ν	55	82.5	9.82	750	5.64	9.0
43-004	HORNYHEAD CHUB	Ι	I	Ν	Ν	83	124.5	14.82	900	6.76	7.2
40-016	WHITE SUCKER	0	Т	S	W	25	37.5	4.46	7650	57.50	204.0
37-003	NORTHERN PIKE	Р		Μ	F	1	1.5	0.18	840	6.31	560.0
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.

IBI: 38.0

Mlwb: 7.8

Site ID:	15-5	River	: 95-706	Indian Creek			RM:	5.40	[Date: 08/25/2017	
Time Fishe	d:	1273	Distance	: 0.150	Drainge (sq mi):	17	7.2	De	pth:	0	
Location:	Oakw	ood Rd.				Lat:	42.2	21088	Lon	ıg: -87.98597	

Species Code:	Species Name:	Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	•	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	<u>Wt</u> .
37-003	NORTHERN PIKE	Р		Μ	F	1	2.0	0.60	2400	8.14	1200.0
40-016	WHITE SUCKER	0	Т	S	W	25	50.0	15.06	22000	74.60	440.0
43-001	COMMON CARP	0	Т	М	G	2	4.0	1.20	1600	5.43	400.0
43-013	CREEK CHUB	G	Т	Ν	Ν	1	2.0	0.60	140	0.47	70.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	19	38.0	11.45	170	0.58	4.4
54-002	BLACKSTRIPE TOPMINNOW	I		М		2	4.0	1.20	4	0.01	1.0
77-006	LARGEMOUTH BASS	С		С	F	19	38.0	11.45	920	3.12	24.2
77-008	GREEN SUNFISH	Ι	Т	С	S	50	100.0	30.12	1680	5.70	16.8
77-009	BLUEGILL SUNFISH	Ι	Р	С	S	26	52.0	15.66	440	1.49	8.4
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	1	2.0	0.60	50	0.17	25.0
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.60	30	0.10	15.0
80-005	BLACKSIDE DARTER	I		S	D	2	4.0	1.20	8	0.03	2.0
80-014	JOHNNY DARTER	Ι		С	D	17	34.0	10.24	50	0.17	1.4
No Spec	ies: 12 Nat. Species:	11	Hybrids	: 1		Total Co	unted:	166 Tc	otal Rel. W	′t. :	29492
IBI:	26.0 Miwb: N/A	۱									

04/01/2019

Site ID:	15-6	River	: 95-706	Indian Creek			RM:	9.83	[Date: 08/22/2017	
Time Fishe	ed:	1052	Distance	: 0.150	Drainge (sq mi):		3.7	De	pth:	0	
Location:	Washi	itay Ave				Lat:	42.2	23809	Lon	ıg: -88.02246	

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-013	CREEK CHUB	G	Т	Ν	Ν	40	80.0	15.87	2300	47.54	28.7
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	1	2.0	0.40	8	0.17	4.0
47-004	YELLOW BULLHEAD	I	Т	С		1	2.0	0.40	20	0.41	10.0
47-006	BLACK BULLHEAD	Ι	Р	С		1	2.0	0.40	40	0.83	20.0
54-002	BLACKSTRIPE TOPMINNOW	I		М		6	12.0	2.38	20	0.41	1.6
77-006	LARGEMOUTH BASS	С		С	F	41	82.0	16.27	340	7.03	4.1
77-008	GREEN SUNFISH	Ι	Т	С	S	22	44.0	8.73	600	12.40	13.6
77-009	BLUEGILL SUNFISH	I	Р	С	S	112	224.0	44.44	1300	26.87	5.8
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	1	2.0	0.40	30	0.62	15.0
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.40	80	1.65	40.0
80-014	JOHNNY DARTER	I		С	D	26	52.0	10.32	100	2.07	1.9
No Spec	ties: 10 Nat. Species: 36.0 Mlwb: N/A	10	Hybrids	: 1		Total Co	unted:	252 To	tal Rel. W	/t. :	4838

Site ID: 1	5-9	River	: 95-706	Indian Creek			RM: 10	0.83	Date: 08/	22/2017
Time Fished:	:	669	Distance	: 0.150	Drainge (sq mi):		2.6	Depth	: 0)
Location: N	. Mid	lothian l	Rd.			Lat:	42.244	454 Lo	ong: -88	8.03565

No Spec		9	Hybrids			Total Co	-		tal Rel. W		2222
80-003	YELLOW PERCH			М		11	22.0	4.98	220	9.90	10.0
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	3	6.0	1.36	12	0.54	2.0
77-009	BLUEGILL SUNFISH	Ι	Р	С	S	67	134.0	30.32	680	30.60	5.0
77-008	GREEN SUNFISH	I	Т	С	S	4	8.0	1.81	120	5.40	15.0
77-006	LARGEMOUTH BASS	С		С	F	112	224.0	50.68	900	40.50	4.0
54-002	BLACKSTRIPE TOPMINNOW	Ι		Μ		2	4.0	0.90	6	0.27	1.5
47-004	YELLOW BULLHEAD	Ι	Т	С		20	40.0	9.05	180	8.10	4.5
43-013	CREEK CHUB	G	Т	Ν	Ν	1	2.0	0.45	100	4.50	50.0
43-003	GOLDEN SHINER	I	Т	Μ	Ν	1	2.0	0.45	4	0.18	2.0
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.

IBI: 38.0

N/A

MIwb:

B3 - 19

Appendix Table B-3. Midwest Biodiversity Institute Fish Species List Kildeer Creek Site ID: 15-4 River: 95-707 0.01 Date: 08/23/2017 RM: Time Fished: 1386 Distance: 0.150 Drainge (sq mi): 6.8 Depth: 0 Location: Lat: 42.20552 Long: -87.97467 Species No וחו **.** . o / 1

GREEN SUNFISH BLUEGILL SUNFISH PUMPKINSEED SUNFISH GREEN SF X BLUEGILL SF JOHNNY DARTER	 	T P P	C C C	S S D	12 92 1 1 1	24.0 184.0 2.0 2.0 2.0	4.98 38.17 0.41 0.41 0.41	230 2220 60 120 2	2.78 26.81 0.72 1.45 0.02	9.5 12.0 30.0 60.0 1.0
GREEN SUNFISH BLUEGILL SUNFISH PUMPKINSEED SUNFISH	 	Р	С	S	92 1	184.0 2.0	38.17 0.41	2220 60	26.81 0.72	12.0 30.0
GREEN SUNFISH BLUEGILL SUNFISH	 	Р	С	S	92	184.0	38.17	2220	26.81	12.0
GREEN SUNFISH	l I	-	-	-		-				
	I	Т	С	S	12	24.0	4.98	230	2.78	9.5
LARGEMOUTH BASS	С		С	F	17	34.0	7.05	800	9.66	23.5
BLACKSTRIPE TOPMINNOW	I		Μ		22	44.0	9.13	50	0.60	1.1
BLACK BULLHEAD	I	Р	С		1	2.0	0.41	100	1.21	50.0
YELLOW BULLHEAD	Ι	Т	С		28	56.0	11.62	3780	45.65	67.5
CHANNEL CATFISH			С	F	2	4.0	0.83	20	0.24	5.0
BLUNTNOSE MINNOW	0	Т	С	Ν	58	116.0	24.07	110	1.33	0.9
CREEK CHUB	G	Т	Ν	Ν	1	2.0	0.41	8	0.10	4.0
WHITE SUCKER	0	Т	S	W	1	2.0	0.41	660	7.97	330.0
GIZZARD SHAD	0		Μ		4	8.0	1.66	120	1.45	15.0
Species Name:	Guild	ance	Guild	Group	Fish	No.	% by No.	Wt.	Wt.	Av. Wt.
	GIZZARD SHAD WHITE SUCKER CREEK CHUB BLUNTNOSE MINNOW CHANNEL CATFISH YELLOW BULLHEAD BLACK BULLHEAD	Species Name:GuildGIZZARD SHADOWHITE SUCKEROCREEK CHUBGBLUNTNOSE MINNOWOCHANNEL CATFISHIYELLOW BULLHEADIBLACK BULLHEADIBLACKSTRIPE TOPMINNOWI	Species Name:GuildanceGIZZARD SHADOWHITE SUCKEROCREEK CHUBGTBLUNTNOSE MINNOWOTCHANNEL CATFISHTYELLOW BULLHEADITBLACK BULLHEADIPBLACKSTRIPE TOPMINNOWI	Species Name:GuildanceGuildGIZZARD SHADOMWHITE SUCKEROTSCREEK CHUBGTNBLUNTNOSE MINNOWOTCCHANNEL CATFISHCCYELLOW BULLHEADITCBLACK BULLHEADIPCBLACKSTRIPE TOPMINNOWIM	GIZZARD SHADOMWHITE SUCKEROTSWCREEK CHUBGTNNBLUNTNOSE MINNOWOTCNCHANNEL CATFISHCFCFYELLOW BULLHEADITCFBLACK BULLHEADIPCFBLACKSTRIPE TOPMINNOWIMM	Species Name:GuildanceGuildGroupFishGIZZARD SHADOM4WHITE SUCKEROTSW1CREEK CHUBGTNN1BLUNTNOSE MINNOWOTCN58CHANNEL CATFISH	Species Name:GuildanceGuildGroupFishNo.GIZZARD SHADOM48.0WHITE SUCKEROTSW12.0CREEK CHUBGTNN12.0BLUNTNOSE MINNOWOTCN58116.0CHANNEL CATFISHVCF24.0YELLOW BULLHEADITC2856.0BLACK STRIPE TOPMINNOWIM2244.0	Species Name:GuildanceGuildGroupFishNo.No.GIZZARD SHADOM48.01.66WHITE SUCKEROTSW12.00.41CREEK CHUBGTNN12.00.41BLUNTNOSE MINNOWOTCN58116.024.07CHANNEL CATFISH-CF24.00.83YELLOW BULLHEADITC2856.011.62BLACK BULLHEADIPC12.00.41BLACKSTRIPE TOPMINNOWIM2244.09.13	Species Name: Guild ance Guild Group Fish No. No. No. Wt. GIZZARD SHAD O M 4 8.0 1.66 120 WHITE SUCKER O T S W 1 2.0 0.41 660 CREEK CHUB G T N N 1 2.0 0.41 660 CREEK CHUB G T N N 1 2.0 0.41 88 BLUNTNOSE MINNOW O T C N 58 116.0 24.07 110 CHANNEL CATFISH V C F 2 4.0 0.83 20 YELLOW BULLHEAD I T C F 28 56.0 11.62 3780 BLACK BULLHEAD I P C 1 2.0 0.41 100 BLACKSTRIPE TOPMINNOW I M 22 44.0 9.13 50	Species Name: Guild ance Guild Group Fish No. No. Wt. Wt. GIZZARD SHAD O M 4 8.0 1.66 120 1.45 WHITE SUCKER O T S W 1 2.0 0.41 660 7.97 CREEK CHUB G T N N 1 2.0 0.41 8 0.10 BLUNTNOSE MINNOW O T C N 58 116.0 24.07 110 1.33 CHANNEL CATFISH C F 2 4.0 0.83 20 0.24 YELLOW BULLHEAD I T C F 2 4.0 0.83 20 0.24 BLACK BULLHEAD I P C 1 2.0 0.41 100 1.21 BLACKSTRIPE TOPMINNOW I M 22 44.0 9.13 50 0.60 LARGEMOUTH BASS C <

IBI:

34.0

MIwb:

N/A

04/01/2019

Site ID: 15-13	River: 95-70	Kildeer Cre	ek	F	RM: 2.21	Date	: 08/24/2017
Time Fished:	840 Dista	nce: 0.150	Drainge (sq mi):	5	.0 Dep	oth:	0
Location: Willo	wbrook Rd. S. of	Half Day Rd.		Lat:	42.19357	Long:	-88.00230

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		2	4.0	0.64	100	1.30	25.0
40-016	WHITE SUCKER	0	Т	S	W	7	14.0	2.24	560	7.26	40.0
43-001	COMMON CARP	0	Т	М	G	11	22.0	3.51	280	3.63	12.7
43-013	CREEK CHUB	G	Т	Ν	Ν	45	90.0	14.38	3080	39.95	34.2
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	21	42.0	6.71	160	2.08	3.8
47-004	YELLOW BULLHEAD	I	Т	С		3	6.0	0.96	20	0.26	3.3
47-006	BLACK BULLHEAD	I	Р	С		3	6.0	0.96	280	3.63	46.6
54-002	BLACKSTRIPE TOPMINNOW	I		М		10	20.0	3.19	40	0.52	2.0
77-006	LARGEMOUTH BASS	С		С	F	18	36.0	5.75	240	3.11	6.6
77-007	WARMOUTH SUNFISH	С		С	S	1	2.0	0.32	40	0.52	20.0
77-008	GREEN SUNFISH	I	Т	С	S	41	82.0	13.10	620	8.04	7.5
77-009	BLUEGILL SUNFISH	I	Р	С	S	150	300.0	47.92	2260	29.31	7.5
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.32	30	0.39	15.0
No Spec	ies: 12 Nat. Species: 32.0 Mlwb: N/A	11	Hybrids	: 1		Total Co	unted:	313 To	tal Rel. W	′t. :	7710

Site ID:	15-7	River	: 95-707 k	Kildeer Cree	k		RM:	4.60	Date	: 08/22/2017	
Time Fish	ed:	819	Distance:	0.150	Drainge (sq mi):	2	2.8	Dept	th:	0	
Location:	Salem	Lake Dr	ive S. of Rt 2	2		Lat:	42.1	9297	Long:	-88.02905	

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М	-	2	4.0	0.60	320	9.61	80.0
40-016	WHITE SUCKER	0	Т	S	W	4	8.0	1.19	60	1.80	7.5
43-001	COMMON CARP	0	Т	М	G	14	28.0	4.17	120	3.60	4.2
43-003	GOLDEN SHINER	I	Т	М	Ν	23	46.0	6.85	200	6.01	4.3
43-013	CREEK CHUB	G	Т	Ν	Ν	3	6.0	0.89	180	5.41	30.0
43-042	FATHEAD MINNOW	0	Т	С	Ν	6	12.0	1.79	30	0.90	2.5
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	39	78.0	11.61	220	6.61	2.8
47-004	YELLOW BULLHEAD	I	Т	С		7	14.0	2.08	120	3.60	8.5
54-002	BLACKSTRIPE TOPMINNOW	I		М		8	16.0	2.38	20	0.60	1.2
77-006	LARGEMOUTH BASS	С		С	F	10	20.0	2.98	140	4.20	7.0
77-008	GREEN SUNFISH	I	Т	С	S	61	122.0	18.15	480	14.41	3.9
77-009	BLUEGILL SUNFISH	I	Р	С	S	158	316.0	47.02	1420	42.64	4.4
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.30	20	0.60	10.0
No Spec IBI:	cies: 12 Nat. Species: 36.0 Mlwb: N/A	11	Hybrids	: 1		Total Co	unted:	336 To	tal Rel. W	′t. :	3330

B3 - 22

Site ID: 15-	12 Rive	er: 95-707 K	Kildeer Creek			RM: 5.2	Date: 08/24/2017	
Time Fished:	588	Distance:	0.150	Drainge (sq mi):	2.	.0 D	epth:	0
Location: IL	Rt. 22			Lat:	42.19621	Lor	ng: -88.03919	

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group		No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W		1	2.0	0.24	30	0.51	15.0
43-001	COMMON CARP	0	Т	М	G		9	18.0	2.20	400	6.85	22.2
43-003	GOLDEN SHINER	Ι	Т	М	Ν		2	4.0	0.49	20	0.34	5.0
43-013	CREEK CHUB	G	Т	Ν	Ν		4	8.0	0.98	420	7.19	52.5
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν		16	32.0	3.90	120	2.05	3.7
47-004	YELLOW BULLHEAD	Ι	Т	С			1	2.0	0.24	10	0.17	5.0
54-002	BLACKSTRIPE TOPMINNOW	I		М			22	44.0	5.37	40	0.68	0.9
77-006	LARGEMOUTH BASS	С		С	F		10	20.0	2.44	650	11.13	32.5
77-008	GREEN SUNFISH	I	Т	С	S		188	376.0	45.85	1060	18.15	2.8
77-009	BLUEGILL SUNFISH	Ι	Р	С	S		155	310.0	37.80	3060	52.40	9.8
77-015	GREEN SF X BLUEGILL SF						2	4.0	0.49	30	0.51	7.5
No Species: 10 Nat. Species:		9	Hybrids	: 1		Tota	al Cou	unted:	410	Total Rel. W	t. :	5840

IBI: 36.0 **Miwb:**

N/A

Site II): 18-5 River: 95-712			Unnamed Trib to Aptakisic Creek @					0.05	Date:	08/24/201	17
Time Fished: Dista			RI Distance:	M4.64	Dr	ainge ((sq mi):	Depth:				
Locati	Location:			0.150			L	0.9 .at:			0	
	Dst. A	Aptakapsic R	d.; W of N	. Buffalo	o Grove	e Rd., 1	wins Cr	42.	18153		-87.96576	6
	Prk.											
Species Code:	Spec	ies Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-013	CREEK CH	IUB	G	т	Ν	Ν	5	10.0	20.83	60	32.61	6.0
43-043	BLUNTNO	SE MINNOW	0	Т	С	Ν	6	12.0	25.00	20	10.87	1.6
77-006	LARGEMC	UTH BASS	С		С	F	4	8.0	16.67	40	21.74	5.0
77-008	GREEN SI	JNFISH	I	Т	С	S	8	16.0	33.33	60	32.61	3.7
77-009	BLUEGILL	SUNFISH	I	Р	С	S	1	2.0	4.17	4	2.17	2.0
No Spec	cies : 5	Nat. Specie	es: 5	Hybrid	s: 0		Total Co	unted:	24 T	otal Rel. V	/t. :	184
IBI:	24.0	Mlwb:	N/A									

		Appendix	Tab					ersity	Institu	te			
Site IE	Fish Species List Site ID: 17-4 River: 95-713 Unnamed Trib to Buffalo Creek @ RM RM: 0.68 Date: 08/23/20											17	
Time Fished: Dista				7.56 Drainge (sq mi): Depth:						th:			
1087 Location:				0.150			L	8.5 Lat:			0 Long:		
	Lake C	ook Rd @ Buffa	lo Cre	ek Trib				42	.15345		-87.9966	1	
Species Code:	Specie	es Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.	
43-013	CREEK CHU	-	G	T T	N	Ν	18	36.0	9.63	1780	27.73	49.4	
47-004 77-008	YELLOW BU		I	T T	C C	S	4 76	8.0 152.0	2.14 40.64	380 2100	5.92 32.71	47.5 13.8	
77-009	BLUEGILL S	SUNFISH	I	Р	С	S	84	168.0	44.92	2000	31.15	11.9	
77-015	GREEN SF	X BLUEGILL SF					5	10.0	2.67	160	2.49	16.0	
No Species: 4 Nat. Species: 4 Hybrids: 1 Total Counted: 187 Total Re								otal Rel. V	Vt. :	6420			

		Appei	ndix Ta		-3. Mi Tish S i		t Biodiv <u>s List</u>	ersity	Institu	ute			
Site IE	D: 15-10	River: 9	95-717	W. Bran		RM:	0.80	Date:	08/22/20	17			
Time Fished: 499 Distance:					0.150 Drainge (sq mi):				2.2 Depth:			0	
Locati	on: Gilmer	⁻ Rd.						Lat: 42	.23022	Long:	-88.0377	0	
Species													
Code:	Specie	es Name:	Fe Gu		Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.	
77-006	LARGEMOL	JTH BASS		С	С	F	1	2.0	0.93	10	0.64	5.0	
77-009	BLUEGILL	SUNFISH		I P	С	S	107	214.0	99.07	1560	99.36	7.2	
No Species: 2 Nat. Species: 2 Hybrids: 0 Total Counted:									108 T	otal Rel. V	/t. :	1570	
IBI:	34.0	MIwb:	N/A										

APPENDIX C

Upper Des Plaines Year 1 2017 Macroinvertebrate Assemblage Data

C-1: Macroinvertebrate IBI Metrics and Scores **C-2**: Macroinvertebrate Taxa by Site and Sample

				Drainage			Num	ber of			Perce	nt:	
River Mile	Site ID	Sample	e Date	Area (sq mi)	Sub- samp	Total Taxa	Coleoptera Taxa	Mayfly Taxa	Intolerant Taxa	MBI	Percent Scrapers	Percent EPT	MIBI
Seavey D	rainage D	itch (95-	-390)										
Year: 20	17												
3.66	15-3		08/24/2017	5.05		18(39.0)	0(0.0)	0(0.0)	1(11.1)	6.6(72.1)	0.0(0.0)	0.0(0.0)	17.5
0.45	15-8	G	08/25/2017	9.77		29(63.0)	1(20.0)	2(19.6)	3(33.3)	7.0(65.6)	2.5(8.6)	2.9(3.9)	30.6
Aptakisic	Creek (9	5-701)											
Year: 20	17												
4.70	18-4	G	08/22/2017	1.09		19(41.0)	0(0.0)	0(0.0)	0(0.0)	6.5(73.8)	10.5(35.6)	0.0(0.0)	21.5
4.30	18-3		08/22/2017	2.30		22(48.0)	0(0.0)	0(0.0)	2(22.2)	6.3(77.1)	14.6(49.4)	0.7(0.9)	28.2
0.80	18-2		08/22/2017	4.94		20(43.0)	1(20.0)	1(9.8)	1(11.1)	6.4(75.4)	0.6(2.0)	4.8(6.5)	24.0
0.50	18-1		08/22/2017	5.50		25(54.0)	1(20.0)	0(0.0)	2(22.2)	6.4(75.4)	1.3(4.3)	2.2(3.0)	25.6
Buffalo C	reek (95-	703)											
Year: 20	17												
14.00	17-5	Р	08/23/2017	1.37		20(43.0)	1(20.0)	1(9.8)	2(22.2)	6.8(68.9)	0.4(1.4)	0.4(0.5)	23.7
7.70	17-3		08/23/2017	9.61		31(67.0)	3(60.0)	2(19.6)	2(22.2)	5.7(86.9)	13.2(44.7)	34.7(46.9)	49.6
6.10	17-2		08/22/2017	22.10		32(70.0)	2(40.0)	4(39.2)	4(44.4)	6.0(82.0)	20.6(69.6)	7.5(10.1)	50.8
0.75	17-1		08/23/2017	29.14		25(54.0)	2(40.0)	1(9.8)	1(11.1)	6.5(73.8)	7.6(25.7)	1.0(1.3)	30.8
Forest La	ke Drain	(95-705)											
Year: 20	17												
0.83	15-11	Р	08/24/2017	1.70		21(46.0)	0(0.0)	0(0.0)	1(11.1)	5.4(91.8)	0.7(2.4)	1.8(2.4)	22.0
Indian Cre	eek (95-7	06)											
Year: 20	17												
10.83	15-9	G	08/24/2017	2.68		18(39.0)	1(20.0)	1(9.8)	1(11.1)	6.8(68.9)	1.8(6.0)	2.8(3.8)	22.7
9.83	15-6		08/24/2017	3.70		26(57.0)	0(0.0)	1(9.8)	2(22.2)	6.8(68.9)	1.3(4.4)	0.3(0.4)	23.2
5.40	15-5		08/24/2017	17.26		31(67.0)	3(60.0)	1(9.8)	2(22.2)	5.3(93.4)	5.6(18.8)	3.1(4.2)	39.4

Appendix Table C-1. Illinois Macroinvertebrate IBI metrics and values from the Des Plaines River survey area in 2017.

				Drainage			Numl	per of			Perce	nt:	
River Mile	Site ID	Sample	e Date	Area (sq mi)	Sub- samp	Total Taxa	Coleoptera Taxa	Mayfly Taxa	Intolerant Taxa	MBI	Percent Scrapers	Percent EPT	MIBI
2.41	15-2		08/25/2017	35.02		38(83.0)	4(80.0)	1(9.8)	4(44.4)	6.3(77.1)	6.9(23.4)	7.2(9.7)	46.8
0.17	15-1		08/25/2017	36.43		39(85.0)	3(60.0)	3(29.4)	5(55.6)	6.0(82.0)	9.2(31.2)	23.3(31.4)	53.5
Kildeer C	reek (95-7	707)											
Year: 20	17												
5.20	15-12	G	08/23/2017	2.08		25(54.0)	1(20.0)	0(0.0)	2(22.2)	5.9(83.6)	62.8(100)	0.3(0.4)	40.0
4.60	15-7		08/23/2017	2.86		31(67.0)	2(40.0)	2(19.6)	1(11.1)	7.1(63.9)	0.6(2.1)	16.1(21.8)	32.2
2.21	15-13	G	08/23/2017	5.01		18(39.0)	1(20.0)	2(19.6)	2(22.2)	5.7(86.9)	6.5(21.8)	51.0(69.0)	39.8
0.01	15-4		08/23/2017	6.80		26(57.0)	2(40.0)	3(29.4)	1(11.1)	5.9(83.6)	1.9(6.3)	2.5(3.3)	33.0
Unnamed	Trib to A	ptakisic	Creek (95-	712)									
Year: 20	17												
0.05	18-5	G	08/22/2017	0.99		23(50.0)	0(0.0)	1(9.8)	2(22.2)	6.0(82.0)	5.3(18.0)	0.4(0.5)	26.1
Buffalo C	reek Tribu	itary (95	5-713)										
Year: 20	17												
0.68	17-4		08/23/2017	8.55		24(52.0)	1(20.0)	2(19.6)	2(22.2)	5.7(86.9)	4.6(15.4)	1.7(2.3)	31.2
W. Brancl	n Indian C	reek (9	5-717)										
Year: 20	17												
0.80	15-10	Р	08/24/2017	2.22		14(30.0)	0(0.0)	0(0.0)	1(11.1)	5.8(85.3)	0.0(0.0)	0.0(0.0)	18.1

Appendix Table C-1. Illinois Macroinvertebrate IBI metrics and values from the Des Plaines River survey area in 2017.

Site	Gregg's Parkway					Site ID:	15-3		
One.	Cicggs i altway					Sam	ple:		
Collec	ction Date: 08/24/2017	River Co	ode: 9	95-390	River: Seave	y Drainage Ditch		RM:	3.66
Taxa Code	Таха	Feed Grp	Tol.	Qt./Ql.	Taxa Code	Таха		Feed Grp Tol.	Qt./QI.
01801	Turbellaria	PR	6	9					
03600	Oligochaeta	CG	10	69					
04666	Helobdella papillata	PA	8	2					
06201	Hyalella azteca	CG	5	53					
06501	Gammaridae	CG	4	14					
22001	Coenagrionidae	PR	5	29					
77130	Ablabesmyia rhamphe group	CG	6	1					
77500	Conchapelopia sp	PR	6	1					
78655	Procladius (Holotanypus) sp	PR	8	2					
80410	Cricotopus (C.) sp	SH	8	1					
80420	Cricotopus (C.) bicinctus	SH	8	7					
80430	Cricotopus (C.) tremulus group	SH	8	1					
82730	Chironomus (C.) decorus group	CG	11	3					
82820	Cryptochironomus sp	PR	8	11					
83040	Dicrotendipes neomodestus	CG	6	9					
84210	Paratendipes albimanus or P. duplic	catus CG	3	17					
84450	Polypedilum (Uresipedilum) flavum	SH	6	7					
84470	Polypedilum (P.) illinoense	SH	6	31					
84540	Polypedilum (Tripodura) scalaenum group	SH	6	10					
85800	Tanytarsus sp	CF	7	19					
92310	Valvata bicarinata		0	2					
98200	Pisidium sp	CF	5	1					
98600	Sphaerium sp	CG	5	3					
	Quantitative Taxa: 23 per of Organisms: 302	Total T mIBI:	axa:	23 17.46					

Site: Verr	non Hills GC - hole numb	or 3				Site ID:	15-8	
Sile. Ven		ers				Samp	le: G	
Collection	Date: 08/25/2017	River C	ode: 9	95-390	River: Seave	ey Drainage Ditch	RM:	(
Taxa Code	Таха	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха	Feed Grp Tol.	Qt./Q
01801 Turbe	ellaria	PR	6	8				
03600 Oligo	chaeta	CG	10	85				
04664 Helol	odella stagnalis	PR	8	1				
04964 Erpol	bdella microstoma	PR	8	2				
05800 Caec	idotea sp	CG	6	3				
06201 Hyale	ella azteca	CG	5	17				
11130 Baeti	s intercalaris	CG	4	1				
13400 Stena	acron sp	SC	4	1				
22001 Coer	agrionidae	PR	5	25				
52200 Cheu	imatopsyche sp	CF	6	5				
53800 Hydr	optila sp	SC	2	1				
65800 Beros	sus sp	PR	99	5				
68700 Dubii	raphia sp	CG	5	2				
74100 Simu	lium sp	CF	6	3				
7120 Ablat	oesmyia mallochi	CG	6	1				
7130 Ablat	pesmyia rhamphe group	CG	6	18				
7150 Ablat	pesmyia simpsoni		0	1				
77500 Conc	hapelopia sp	PR	6	2				
-	somyia senata or nemannimyia norena		5	1				
78600 Penta	aneura inconspicua	PR	3	5				
78655 Procl	adius (Holotanypus) sp	PR	8	4				
80420 Crico	topus (C.) bicinctus	SH	8	1				
30430 Crico	topus (C.) tremulus group	SH	8	1				
32730 Chirc	nomus (C.) decorus group	CG	11	2				
32820 Crypt	tochironomus sp	PR	8	2				
33002 Dicro	tendipes modestus	CG	6	3				
33040 Dicro	tendipes neomodestus	CG	6	19				
33300 Glypt	otendipes (G.) sp	CF	10	2				
34210 Para	tendipes albimanus or P. dupli	catus CG	3	8				
34450 Polyp	oedilum (Uresipedilum) flavum	SH	6	9				
34470 Polyp	oedilum (P.) illinoense	SH	6	10				
34540 Polyp group	bedilum (Tripodura) scalaenum D	SH	6	12				
35625 Rhec	otanytarsus sp	CF	6	3				
35800 Tany	tarsus sp	CF	7	2				
93200 Hydro	obiidae	SC	6	5				
98600 Spha	erium sp	CG	5	12				
No. Quant	titative Taxa: 36	Total T	axa:	36				
	f Organisms: 282	mIBI:		30.57				

Site: N. Buffalo Grove Rd. (Twin C	reeks P	ark)			Site	D: 18- Sample: (
Collection Date: 08/22/2017	River Co	ode: 9	95-701	River: Aptak	isic Creek			RM:	4.70
Taxa Code Taxa	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха		Feed Grp	l Tol.	Qt./QI.
01801 Turbellaria	PR	6	110						
03600 Oligochaeta	CG	10	60						
04664 Helobdella stagnalis	PR	8	2						
05800 Caecidotea sp	CG	6	2						
06201 Hyalella azteca	CG	5	50						
06700 Crangonyx sp	CG	4	3						
22001 Coenagrionidae	PR	5	6						
60900 Peltodytes sp	SH	99	1						
77500 Conchapelopia sp	PR	6	7						
78655 Procladius (Holotanypus) sp	PR	8	4						
80420 Cricotopus (C.) bicinctus	SH	8	3						
82820 Cryptochironomus sp	PR	8	3						
83000 Dicrotendipes sp	CG	6	1						
84315 Phaenopsectra flavipes	SC	4	1						
84470 Polypedilum (P.) illinoense	SH	6	7						
84540 Polypedilum (Tripodura) scalaenum group	SH	6	1						
85814 Tanytarsus glabrescens group		7	1						
93200 Hydrobiidae	SC	6	30						
95100 Physella sp	SC	9	3						
95501 Planorbidae	SC	6	1						
98200 Pisidium sp	CF	5	32						
98600 Sphaerium sp	CG	5	5						
No. Quantitative Taxa: 22	Total T	axa:	22						
Number of Organisms: 333	mIBI:		21.48						

Site	Copperwood Dr. bike xing					Site	e ID: 18-3			
							Sample:			
Colle	ction Date: 08/22/2017	River C	ode: 9	95-701	River: Aptaki	sic Creek			RM:	4.30
Taxa Code	Таха	Feed Grp		Qt./QI.	Taxa Code	Таха		eed Grp	Tol.	Qt./QI.
01801	Turbellaria	PR	6	31						
03600	Oligochaeta	CG	10	36						
04660	Helobdella sp	PA	8	1						
04664	Helobdella stagnalis	PR	8	6						
06201	Hyalella azteca	CG	5	42						
22001	Coenagrionidae	PR	5	27						
52200	Cheumatopsyche sp	CF	6	1						
53800	Hydroptila sp	SC	2	1						
77120	Ablabesmyia mallochi	CG	6	4						
77130	Ablabesmyia rhamphe group	CG	6	3						
77500	Conchapelopia sp	PR	6	3						
78655	Procladius (Holotanypus) sp	PR	8	8						
80420	Cricotopus (C.) bicinctus	SH	8	5						
82820	Cryptochironomus sp	PR	8	1						
82880	Cryptotendipes sp	CG	6	1						
83002	Dicrotendipes modestus	CG	6	4						
83040	Dicrotendipes neomodestus	CG	6	38						
83051	Dicrotendipes simpsoni	CG	6	1						
83150	Endochironomus sp	SH	6	2						
84210	Paratendipes albimanus or P. duplic	catus CG	3	4						
84470	Polypedilum (P.) illinoense	SH	6	11						
84540	Polypedilum (Tripodura) scalaenum group	SH	6	1						
85500	Paratanytarsus sp	CG	6	1						
85800	Tanytarsus sp	CF	7	4						
93200	Hydrobiidae	SC	6	41						
96120	Menetus (Micromenetus) dilatatus	SC	6	3						
98200	Pisidium sp	CF	5	27						
98600	Sphaerium sp	CG	5	1						
No. C	Quantitative Taxa: 28	Total T	axa:	28						
Num	per of Organisms: 308	mIBI:		28.22						

Site	Pekara Rd, West of Hwy. 21					Site	ə ID: 18-	2		
Sile.	Tekara Ru, West of Hwy. 21						Sample:			
Collec	ction Date: 08/22/2017 F	River C	ode: 9	95-701	River: Aptak	isic Creek			RM:	(
Taxa Code	Таха	Feed Grp	Tol.	Qt./Ql.	Taxa Code	Таха		Feec Grp	l Tol.	Qt./Q
01801	Turbellaria	PR	6	1						
3600	Oligochaeta	CG	10	24						
	Caecidotea sp	CG	6	4						
6810	Gammarus fasciatus	CG	3	82						
7200	Caenis sp	CG	6	15						
	Coenagrionidae	PR	5	6						
2300	Argia sp	PR	5	2						
9500	Oecetis sp	PR	5	1						
8700	Dubiraphia sp	CG	5	42						
	Ablabesmyia rhamphe group	CG	6	11						
3655	Procladius (Holotanypus) sp	PR	8	24						
2820	Cryptochironomus sp	PR	8	4						
2880	Cryptotendipes sp	CG	6	1						
3000	Dicrotendipes sp	CG	6	1						
3040	Dicrotendipes neomodestus	CG	6	1						
3051	Dicrotendipes simpsoni	CG	6	2						
3300	Glyptotendipes (G.) sp	CF	10	76						
4470	Polypedilum (P.) illinoense	SH	6	18						
4520	Polypedilum (Tripodura) halterale gro	up SH	6	1						
4540	Polypedilum (Tripodura) scalaenum group	SH	6	3						
5800	Tanytarsus sp	CF	7	1						
3200	Hydrobiidae	SC	6	2						
7601	Corbicula fluminea	CF	4	6						
8600	Sphaerium sp	CG	5	4						
No. C	Quantitative Taxa: 24	Total T	axa:	24						
Numb	per of Organisms: 332	mIBI:		23.98						

Sito	Aspen Road					Site	ID: 18-1			
							Sample:			
Colle	ction Date: 08/22/2017	River C	ode: 9	95-701	River: Aptak	isic Creek			RM:	0.5
Taxa Code	Таха	Feed Grp		Qt./QI.	Taxa Code	Таха		Feed Grp	Tol.	Qt./Ql.
01801	Turbellaria	PR	6	24						
03600	Oligochaeta	CG	10	27						
05800	Caecidotea sp	CG	6	2						
06201	Hyalella azteca	CG	5	2						
06501	Gammaridae	CG	4	5						
22001	Coenagrionidae	PR	5	5						
52200	Cheumatopsyche sp	CF	6	3						
53800	Hydroptila sp	SC	2	4						
68700	Dubiraphia sp	CG	5	4						
71900	Tipula sp	SH	4	1						
77130	Ablabesmyia rhamphe group	CG	6	12						
78655	Procladius (Holotanypus) sp	PR	8	4						
80420	Cricotopus (C.) bicinctus	SH	8	2						
80510	Cricotopus (Isocladius) sylvestris gr	oup SH	8	2						
81240	Nanocladius (N.) distinctus	CG	3	2						
82730	Chironomus (C.) decorus group	CG	11	3						
82820	Cryptochironomus sp	PR	8	1						
83000	Dicrotendipes sp	CG	6	4						
83040	Dicrotendipes neomodestus	CG	6	5						
83050	Dicrotendipes lucifer	CG	6	1						
83300	Glyptotendipes (G.) sp	CF	10	8						
84000	Parachironomus sp	PR	8	3						
84450	Polypedilum (Uresipedilum) flavum	SH	6	2						
84470	Polypedilum (P.) illinoense	SH	6	173						
84960	Pseudochironomus sp	CG	5	1						
85230	Cladotanytarsus mancus group	CG	7	3						
85625	Rheotanytarsus sp	CF	6	1						
	Tanytarsus sp	CF	7	1						
98001			5	11						
	Quantitative Taxa: 29 ber of Organisms: 316	Total T mIBI:	axa:	29 25.56						

Sito	Quentin Rd.					Site	D: 17-5		
Sile.							Sample: P		
Colle	ction Date: 08/23/2017	River C	ode: 9	95-703	River: Buffa	lo Creek		RM:	14.00
Таха		Feed			Таха			Feed	
Code	Таха	Grp	Tol.	Qt./QI.	Code	Таха		Grp Tol.	Qt./QI.
01801	Turbellaria	PR	6	36					
03600	Oligochaeta	CG	10	56					
04664	Helobdella stagnalis	PR	8	2					
04964	Erpobdella microstoma	PR	8	1					
05800	Caecidotea sp	CG	6	6					
06201	Hyalella azteca	CG	5	5					
06700	Crangonyx sp	CG	4	1					
11130	Baetis intercalaris	CG	4	1					
69400	Stenelmis sp	SC	7	1					
71900	Tipula sp	SH	4	3					
77500	Conchapelopia sp	PR	6	1					
80420	Cricotopus (C.) bicinctus	SH	8	22					
82141	Thienemanniella xena	CG	2	1					
82880	Cryptotendipes sp	CG	6	1					
83040	Dicrotendipes neomodestus	CG	6	55					
83300	Glyptotendipes (G.) sp	CF	10	1					
84210	Paratendipes albimanus or P. dupli	catus CG	3	22					
84450	Polypedilum (Uresipedilum) flavum	SH	6	17					
84470	Polypedilum (P.) illinoense	SH	6	5					
84520	Polypedilum (Tripodura) halterale g	roup SH	6	1					
85500	Paratanytarsus sp	CG	6	5					
85800	Tanytarsus sp	CF	7	2					
98001	Pisidiidae		5	3					
No	Quantitative Taxa: 23	Total T	ava.	23					
	ber of Organisms: 248	mlBI:	ana.	23					
Turr		moi.		23.00					

Sito	Checker Road					Sit	e ID:	17-3		
Sile.	Checker Road						Sampl	e:		
Colle	ction Date: 08/23/2017	River C	ode: 9	95-703	River: Buffal	lo Creek			RM:	7.70
Taxa		Feed			Таха			Feed		
Code	Таха	Grp	Tol.	Qt./QI.	Code	Таха		Grp	Tol.	Qt./QI.
01801	Turbellaria	PR	6	4						
03600	Oligochaeta	CG	10	14						
04964	Erpobdella microstoma	PR	8	2						
05800	Caecidotea sp	CG	6	27						
06201	Hyalella azteca	CG	5	25						
06810	Gammarus fasciatus	CG	3	1						
11130	Baetis intercalaris	CG	4	52						
13400	Stenacron sp	SC	4	4						
21200	Calopteryx sp	PR	4	1						
22001	Coenagrionidae	PR	5	9						
22300	Argia sp	PR	5	7						
48200	Chauliodes sp	PR	4	1						
52200	Cheumatopsyche sp	CF	6	62						
68700	Dubiraphia sp	CG	5	20						
69200	Optioservus sp	SC	4	2						
69400	Stenelmis sp	SC	7	38						
74100		CF	6	18						
77500	Conchapelopia sp	PR	6	4						
	Procladius (Holotanypus) sp	PR	8	1						
	Cricotopus (C.) bicinctus	SH	8	1						
81040		CG	6	1						
	Rheocricotopus (Psilocricotopus) robacki	CG	6	1						
82820	Cryptochironomus sp	PR	8	6						
	Dicrotendipes neomodestus	CG	6	1						
	Paratendipes albimanus or P. dupli		3	2						
84450			6	9						
84470		SH	6	12						
84750			5	2						
	Tanytarsus sp	CF	7	1						
	Physella sp	SC	9	1						
97601		CF	4	9						
	Pisidium sp	CF	5	2						
	Quantitative Taxa: 32 ber of Organisms: 340	Total T mIBI:	axa:	32 49.62						

Site: Lake Cook Rd @ Earington				Site ID:	17-2		
Site: Lake Cook Rd @ Farington	DIICH				Sam	ple:	
Collection Date: 08/22/2017	River C	ode: 9	95-703	River: Buffalo	o Creek	RM:	6
Taxa	Feed			Таха		Feed	
Code Taxa	Grp	Tol.	Qt./QI.	Code	Таха	Grp Tol.	Qt./Q
01801 Turbellaria	PR	6	11				
03600 Oligochaeta	CG	10	40				
)4664 Helobdella stagnalis	PR	8	1				
)5800 Caecidotea sp	CG	6	16				
)6201 Hyalella azteca	CG	5	37				
1130 Baetis intercalaris	CG	4	12				
3400 Stenacron sp	SC	4	3				
6700 Tricorythodes sp	CG	5	2				
17200 Caenis sp	CG	6	1				
21300 Hetaerina sp	PR	3	2				
22001 Coenagrionidae	PR	5	27				
27600 Epitheca (Tetragoneuria) sp	PR	4	1				
52200 Cheumatopsyche sp	CF	6	6				
53800 Hydroptila sp	SC	2	1				
68700 Dubiraphia sp	CG	5	21				
39400 Stenelmis sp	SC	7	45				
7120 Ablabesmyia mallochi	CG	6	2				
77130 Ablabesmyla rhamphe group	CG	6	2				
7500 Conchapelopia sp	PR	6	2				
7300 Voltenapelopia sp 78450 Nilotanypus fimbriatus	PR	6	1				
	PR	3	1				
78655 Procladius (Holotanypus) sp	PR	8	4				
31825 Rheocricotopus (Psilocricotopus) robacki	CG	6	1				
2820 Cryptochironomus sp	PR	8	1				
33040 Dicrotendipes neomodestus	CG	6	1				
34210 Paratendipes albimanus or P. dupli	catus CG	3	2				
34450 Polypedilum (Uresipedilum) flavum	SH	6	2				
34470 Polypedilum (P.) illinoense	SH	6	7				
34540 Polypedilum (Tripodura) scalaenun group	n SH	6	1				
4960 Pseudochironomus sp	CG	5	1				
35625 Rheotanytarsus sp	CF	6	1				
37501 Empididae	PR	6	1				
93200 Hydrobiidae	SC	6	20				
7601 Corbicula fluminea	CF	4	43				
98200 Pisidium sp	CF	5	10				
98600 Sphaerium sp	CG	5	6				
	Tatal T	0.00					
No. Quantitative Taxa: 36	Total T	axa:					
Number of Organisms: 335	mIBI:		50.76				

Sito	Plum Crook Drive (Wolf Dr)					Site	e ID: 17-1			
Sile. I	Plum Creek Drive (Wolf Dr)						Sample:			
Collec	tion Date: 08/23/2017	River C	ode: 9	95-703	River: Buffal	o Creek			RM:	0.75
Taxa Code	Таха	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха		eed Grp	Tol.	Qt./QI.
01801	Turbellaria	PR	6	1						
03600	Oligochaeta	CG	10	81						
04664	Helobdella stagnalis	PR	8	1						
06201	Hyalella azteca	CG	5	13						
06800	Gammarus sp		3	67						
17200	Caenis sp	CG	6	2						
22001	Coenagrionidae	PR	5	9						
43300	Ranatra sp	PR	99	1						
52200	Cheumatopsyche sp	CF	6	1						
65800	Berosus sp	PR	99	1						
68700	Dubiraphia sp	CG	5	7						
69400	Stenelmis sp	SC	7	2						
77120	Ablabesmyia mallochi	CG	6	1						
77500	Conchapelopia sp	PR	6	3						
78655	Procladius (Holotanypus) sp	PR	8	5						
80420	Cricotopus (C.) bicinctus	SH	8	8						
82730	Chironomus (C.) decorus group	CG	11	14						
82820	Cryptochironomus sp	PR	8	3						
83040	Dicrotendipes neomodestus	CG	6	2						
84470	Polypedilum (P.) illinoense	SH	6	9						
	Polypedilum (Tripodura) scalaenum group	SH	6	3						
84750	Stictochironomus sp		5	1						
85800	Tanytarsus sp	CF	7	3						
93200	Hydrobiidae	SC	6	19						
95100	Physella sp	SC	9	1						
95501	Planorbidae	SC	6	1						
97601	Corbicula fluminea	CF	4	2						
98200	Pisidium sp	CF	5	42						
98600	Sphaerium sp	CG	5	1						
	uantitative Taxa: 29 er of Organisms: 304	Total T mIBI:	axa:	29 30.82						

Site [.]	Hawthorne Grove Rd.					Site	e ID:	15-1 <i>°</i>	I	
0.00.							Samp	le: P		
Colle	ction Date: 08/24/2017	River Co	ode: 9	95-705	River: Fores	t Lake Drain			RM:	0.8
Taxa Code	Таха	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха			Feed Grp Tol.	Qt./QI.
03600	Oligochaeta	CG	10	4						
04666	Helobdella papillata	PA	8	1						
06201	Hyalella azteca	CG	5	198						
21200	Calopteryx sp	PR	4	1						
22001	Coenagrionidae	PR	5	6						
52200	Cheumatopsyche sp	CF	6	5						
59555	Oecetis inconspicua complex sp F (sensu Floyd, 1995)		0	2						
74100	Simulium sp	CF	6	1						
77120	Ablabesmyia mallochi	CG	6	4						
77500	Conchapelopia sp	PR	6	5						
78655	Procladius (Holotanypus) sp	PR	8	23						
82820	Cryptochironomus sp	PR	8	1						
83002	Dicrotendipes modestus	CG	6	3						
84210	Paratendipes albimanus or P. duplic	catus CG	3	3						
84450	Polypedilum (Uresipedilum) flavum	SH	6	4						
84470	Polypedilum (P.) illinoense	SH	6	5						
84750	Stictochironomus sp		5	1						
85625	Rheotanytarsus sp	CF	6	2						
85800	Tanytarsus sp	CF	7	2						
86900	Myxosargus sp	CG	10	1						
93200	Hydrobiidae	SC	6	2						
98600	Sphaerium sp	CG	5	5						
No. C	Quantitative Taxa: 22	Total T	axa:	22						
	ber of Organisms: 279	mIBI:		21.97						

Sito	N. Midlothian Rd.					Site	ID: 15-9		
Sile.	N. MICIOLIIIAITINC.						Sample: G		
Colle	ction Date: 08/24/2017	River C	ode: 9	95-706	River: Indian	Creek		RM:	10.83
Taxa Code	Таха	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха		Feed Grp Tol.	Qt./Ql.
01801	Turbellaria	PR	6	8					
03600	Oligochaeta	CG	10	71					
04666	Helobdella papillata	PA	8	1					
06201	Hyalella azteca	CG	5	5					
11130	Baetis intercalaris	CG	4	5					
22001	Coenagrionidae	PR	5	1					
52200	Cheumatopsyche sp	CF	6	3					
69400	Stenelmis sp	SC	7	1					
77120	Ablabesmyia mallochi	CG	6	3					
77500	Conchapelopia sp	PR	6	32					
78655	Procladius (Holotanypus) sp	PR	8	1					
82820	Cryptochironomus sp	PR	8	4					
83300	Glyptotendipes (G.) sp	CF	10	3					
84210	Paratendipes albimanus or P. duplic	atus CG	3	2					
84450	Polypedilum (Uresipedilum) flavum	SH	6	61					
84470	Polypedilum (P.) illinoense	SH	6	9					
85625	Rheotanytarsus sp	CF	6	3					
95100	Physella sp	SC	9	4					
98001	Pisidiidae		5	66					
No. C	Quantitative Taxa: 19	Total T	axa:	19					
Num	ber of Organisms: 283	mIBI:		22.65					

Site: Washitay Ave					Site II	D: 15-6	5	
ite. Washitay Ave					s	Sample:		
Collection Date: 08/24/2017	River C	ode: 9	95-706	River: Indian	Creek		RM:	
Faxa Code Taxa	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха		Feed Grp Tol.	Qt
1801 Turbellaria	PR	6	31					
3600 Oligochaeta	CG	10	67					
4964 Erpobdella microstoma	PR	8	2					
5800 Caecidotea sp	CG	6	68					
6201 Hyalella azteca	CG	5	8					
6700 Crangonyx sp	CG	4	4					
7200 Caenis sp	CG	6	1					
7120 Ablabesmyia mallochi	CG	6	8					
7355 Clinotanypus pinguis	PR	6	1					
7500 Conchapelopia sp	PR	6	5					
8655 Procladius (Holotanypus) sp	PR	8	4					
0420 Cricotopus (C.) bicinctus	SH	8	1					
1240 Nanocladius (N.) distinctus	CG	3	1					
2730 Chironomus (C.) decorus group	CG	11	1					
2820 Cryptochironomus sp	PR	8	3					
3051 Dicrotendipes simpsoni	CG	6	2					
4210 Paratendipes albimanus or P. duplic	atus CG	3	6					
4315 Phaenopsectra flavipes	SC	4	2					
4450 Polypedilum (Uresipedilum) flavum	SH	6	2					
4470 Polypedilum (P.) illinoense	SH	6	7					
5400 Micropsectra sp	CG	4	1					
5500 Paratanytarsus sp	CG	6	17					
5625 Rheotanytarsus sp	CF	6	45					
5800 Tanytarsus sp	CF	7	8					
7540 Hemerodromia sp	PR	6	1					
3200 Hydrobiidae	SC	6	2					
8001 Pisidiidae		5	1					
8200 Pisidium sp	CF	5	9					
No. Quantitative Taxa: 28 Number of Organisms: 308	Total T mIBI:	axa:	28 23.24					

Sito	Oakwood Rd.					Sit	e ID: 1	5-5		
Sile.							Sample:			
Colle	ction Date: 08/24/2017	River C	ode: 9	95-706	River: Indian	Creek			RM:	5.40
Taxa Code		Feed Grp	Tol.	Qt./Ql.	Taxa Code	Таха		Feed Grp	Tol.	Qt./QI.
01801	Turbellaria	PR	6	1						
03600	Oligochaeta	CG	10	17						
04964	Erpobdella microstoma	PR	8	2						
05800	Caecidotea sp	CG	6	14						
06201	Hyalella azteca	CG	5	156						
06700	Crangonyx sp	CG	4	23						
06800	Gammarus sp		3	6						
08200	Orconectes sp	CG	5	1						
13400	Stenacron sp	SC	4	7						
21200	Calopteryx sp	PR	4	1						
22001	Coenagrionidae	PR	5	7						
22300	Argia sp	PR	5	2						
23600	Aeshna sp	PR	4	1						
52200	Cheumatopsyche sp	CF	6	2						
68700	Dubiraphia sp	CG	5	10						
68901	Macronychus glabratus		2	4						
69400	Stenelmis sp	SC	7	2						
77120	Ablabesmyia mallochi	CG	6	1						
78655	Procladius (Holotanypus) sp	PR	8	2						
79100	Thienemannimyia group	PR	6	1						
82820	Cryptochironomus sp	PR	8	1						
82880	Cryptotendipes sp	CG	6	2						
83040	Dicrotendipes neomodestus	CG	6	1						
84470	Polypedilum (P.) illinoense	SH	6	1						
84750	Stictochironomus sp		5	1						
85500	Paratanytarsus sp	CG	6	1						
85625	Rheotanytarsus sp	CF	6	2						
85800	Tanytarsus sp	CF	7	2						
	Chrysops sp	CG	7	1						
	Hydrobiidae	SC	6	7						
	Pisidium sp	CF	5	3						
	Sphaerium sp	CG	5	5						
No. (Quantitative Taxa: 32	Total T	axa:	32						
	ber of Organisms: 287	mIBI:		39.36						

Appendix Table C-2. Macroinvertebrate taxa collected b	y MBI at sites in the Des Plaines River study area in 2017.

Site [.]	Sullivan Woods Preserve, No	rth of C	reekv	view Dr			Si	te ID: 15	-2		
One.		lew Dr.				Sample:					
Colle	ction Date: 08/25/2017	River Co	ode: 9	95-706	River:	Indian Cree	ek			RM:	2.41
Taxa	_	Feed			Taxa		_		Feed		
Code	Таха	Grp	Tol.	Qt./QI.	Code		Таха		Grp	Tol.	Qt./QI.
01801	Turbellaria	PR	6	2	85500	Paratanytars	sus sp		CG	6	2
03600	Oligochaeta	CG	10	62	85625	Rheotanytar	sus sp		CF	6	3
04601	Glossiphoniidae	PR	8	1	95100	Physella sp			SC	9	2
04664	Helobdella stagnalis	PR	8	1	96120	Menetus (Mi	cromenet	us) dilatatus	SC	6	1
04930	Erpobdella sp	PR	8	2	97601	Corbicula flu	iminea		CF	4	2
05800	Caecidotea sp	CG	6	2							
06201	Hyalella azteca	CG	5	98	No. C	Quantitative	e Taxa:	43	Total T	axa:	43
06700	Crangonyx sp	CG	4	11	Numl	per of Orga	anisms:	347	mIBI:		46.77
08200	Orconectes sp	CG	5	1							
13400	Stenacron sp	SC	4	5							
21200	Calopteryx sp	PR	4	5							
21300	Hetaerina sp	PR	3	1							
22001	Coenagrionidae	PR	5	15							
22300	Argia sp	PR	5	14							
52200	Cheumatopsyche sp	CF	6	20							
68700	Dubiraphia sp	CG	5	7							
68901	Macronychus glabratus		2	1							
69200	Optioservus sp	SC	4	3							
69400	Stenelmis sp	SC	7	13							
72700	Anopheles sp	CF	6	1							
77120	Ablabesmyia mallochi	CG	6	3							
77130	Ablabesmyia rhamphe group	CG	6	4							
	Conchapelopia sp	PR	6	4							
	Hayesomyia senata or Thienemannimyia norena		5	1							
78401	Natarsia species A (sensu Roback, 1978)	PR	6	2							
78600	Pentaneura inconspicua	PR	3	1							
80420	Cricotopus (C.) bicinctus	SH	8	3							
81825	Rheocricotopus (Psilocricotopus) robacki	CG	6	2							
82730	Chironomus (C.) decorus group	CG	11	1							
		PR	8	2							
83040	Dicrotendipes neomodestus	CG	6	6							
83150	Endochironomus sp	SH	6	2							
	Microtendipes sp	CF	6	1							
	Paratendipes albimanus or P. duplica	atus CG	3	1							
84450	Polypedilum (Uresipedilum) flavum	SH	6	10							
	Polypedilum (P.) illinoense	SH	6	25							
	Polypedilum (Tripodura) scalaenum group	SH	6	2							
84750	Stictochironomus sp		5	2							

Site [.]	Marriot Inn parking lot - adj. C	ranes l	andii	ng GC		Site	e ID: 15-	1		
				-			Sample:			
Colle	ction Date: 08/25/2017	River C	ode: 9	95-706	River:	Indian Creek			RM:	0.17
Taxa Code	_	Feed	- .		Таха	_		Feed	- .	
Code	Таха	Grp	lol.	Qt./QI.	Code	Таха		Grp	lol.	Qt./QI.
01801	Turbellaria	PR	6	1	85800	Tanytarsus sp		CF	7	6
03600	Oligochaeta	CG	10	16	85821	Tanytarsus glabrescens	s group sp 7	CF	7	2
05800	Caecidotea sp	CG	6	1	93200	Hydrobiidae		SC	6	7
06201	Hyalella azteca	CG	5	6		Elimia sp		SC	6	6
06810	Gammarus fasciatus	CG	3	2	95100	Physella sp		SC	9	1
11120	Baetis flavistriga	CG	4	6	97601	Corbicula fluminea		CF	4	9
11130	Baetis intercalaris	CG	4	18	98200	Pisidium sp		CF	5	2
13400	Stenacron sp	SC	4	1						
16700	Tricorythodes sp	CG	5	2		uantitative Taxa:	45	Total T	axa:	45
21200	Calopteryx sp	PR	4	1	Numb	per of Organisms:	271	mIBI:		53.51
22300	Argia sp	PR	5	1						
52200	Cheumatopsyche sp	CF	6	35						
53800	Hydroptila sp	SC	2	1						
68700	Dubiraphia sp	CG	5	2						
69200	Optioservus sp	SC	4	1						
69400	Stenelmis sp	SC	7	7						
74100	Simulium sp	CF	6	5						
77120	Ablabesmyia mallochi	CG	6	6						
77500	Conchapelopia sp	PR	6	7						
77750	Hayesomyia senata or Thienemannimyia norena		5	2						
78600	Pentaneura inconspicua	PR	3	3						
78655	Procladius (Holotanypus) sp	PR	8	1						
80420	Cricotopus (C.) bicinctus	SH	8	9						
81825	Rheocricotopus (Psilocricotopus) robacki	CG	6	13						
82141	Thienemanniella xena	CG	2	1						
82730	Chironomus (C.) decorus group	CG	11	3						
82820	Cryptochironomus sp	PR	8	1						
83040	Dicrotendipes neomodestus	CG	6	4						
83820	Microtendipes "caelum" (sensu Simp & Bode, 1980)	oson CF	6	1						
84210	Paratendipes albimanus or P. duplic	atus CG	3	2						
84300	Phaenopsectra obediens group	SC	4	1						
84450	Polypedilum (Uresipedilum) flavum	SH	6	18						
84460	Polypedilum (P.) fallax group	SH	6	1						
84470	Polypedilum (P.) illinoense	SH	6	33						
84540	Polypedilum (Tripodura) scalaenum group	SH	6	8						
85265	Cladotanytarsus vanderwulpi group	sp 5 CG	7	1						
	Rheotanytarsus pellucidus	CF	6	1						
	Rheotanytarsus sp	CF	6	16						

Sito: II Dt 22					Site ID:	15-12
Site: IL Rt. 22					Samp	ole: G
Collection Date: 08/23/2017	River C	ode: 9	95-707	River: Kildee	r Creek	RM:
Taxa Code Taxa	Feed Grp	Tol.	Qt./Ql.	Taxa Code	Таха	Feed Grp Tol.
3600 Oligochaeta	CG	10	7			
4664 Helobdella stagnalis	PR	8	6			
4935 Erpobdella punctata punctata	PR	8	1			
964 Erpobdella microstoma	PR	8	7			
5800 Caecidotea sp	CG	6	2			
6501 Gammaridae	CG	4	1			
1200 Calopteryx sp	PR	4	2			
9500 Oecetis sp	PR	5	1			
8700 Dubiraphia sp	CG	5	4			
4100 Simulium sp	CF	6	1			
7120 Ablabesmyia mallochi	CG	6	1			
7500 Conchapelopia sp	PR	6	1			
3655 Procladius (Holotanypus) sp	PR	8	5			
2730 Chironomus (C.) decorus group	CG	11	1			
2820 Cryptochironomus sp	PR	8	8			
2880 Cryptotendipes sp	CG	6	1			
4210 Paratendipes albimanus or P. duplication	atus CG	3	21			
4470 Polypedilum (P.) illinoense	SH	6	3			
4540 Polypedilum (Tripodura) scalaenum group	SH	6	4			
4750 Stictochironomus sp		5	2			
4960 Pseudochironomus sp	CG	5	3			
5500 Paratanytarsus sp	CG	6	2			
5800 Tanytarsus sp	CF	7	1			
6100 Chrysops sp	CG	7	1			
3200 Hydrobiidae	SC	6	208			
5100 Physella sp	SC	9	1			
8001 Pisidiidae		5	16			
8200 Pisidium sp	CF	5	21			
9001 Unionidae	CF	1	1			
No. Quantitative Taxa: 29	Total T	axa:	29			
Number of Organisms: 333	mIBI:	<i>a</i>	40.03			

Site	Salem Lake Drive S. of Rt 22)					Site ID:
Sile.	Galetti Lane Dilve S. UI RI 22	-					Sam
Colle	ction Date: 08/23/2017	River C	ode:	95-707	River: Kildee	er C	reek
Taxa Code	Таха	Feed Grp		Qt./QI.	Taxa Code		Таха
1801	Turbellaria	PR	6	3			
3600	Oligochaeta	CG	10	53			
201	Hyalella azteca	CG	5	70			
200	Callibaetis sp	CG	4	7			
200	Caenis sp	CG	6	28			
200	Calopteryx sp	PR	4	1			
01	Coenagrionidae	PR	5	31			
800	Ranatra sp	PR	99	2			
00	Cheumatopsyche sp	CF	6	16			
30	Hydropsyche depravata group	CF	5	2			
00	Dubiraphia sp	CG	5	1			
0	Stenelmis sp	SC	7	2			
0	Anopheles sp	CF	6	1			
00	Conchapelopia sp	PR	6	1			
00	Guttipelopia guttipennis	PR	6	1			
55	Procladius (Holotanypus) sp	PR	8	4			
80	Procladius (Psilotanypus) bellus	PR	8	2			
0	Tanypus sp	PR	8	2			
0	Cricotopus (Isocladius) sylvestris gr	oup SH	8	1			
35	Chironomus (Lobochironomus) dors	alis	0	1			
0	Cladopelma sp	CG	6	2			
0	Cryptochironomus sp	PR	8	1			
)2	Dicrotendipes modestus	CG	6	4			
58	Endochironomus nigricans	SH	6	2			
00	Glyptotendipes (G.) sp	CF	10	59			
0	Parachironomus sp	PR	8	6			
10	Paratendipes albimanus or P. duplic	catus CG	3	3			
50	Polypedilum (Uresipedilum) flavum	SH	6	3			
70	Polypedilum (P.) illinoense	SH	6	2			
540	Polypedilum (Tripodura) scalaenum group	SH	6	1			
00	Paratanytarsus sp	CG	6	10			
25	Rheotanytarsus sp	CF	6	2			
00	Tanytarsus sp	CF	7	1			
501	Ephydridae	CG	8	1			
600	Sphaerium sp	CG	5	5			
 5. (Quantitative Taxa: 35	Total T	axa:	35			
	per of Organisms: 331	mIBI:	and.	32.21			

Site: Willowbrook Rd. S. of Half D	ay Rd.				Site I	D: 15-13 Sample: G	3	
Collection Date: 08/23/2017	River C	ode: 9	95-707	River: Kildee	er Creek	-	RM:	2.21
Taxa Code Taxa	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха		Feed Grp Tol.	Qt./QI.
01801 Turbellaria	PR	6	2					
03600 Oligochaeta	CG	10	11					
06810 Gammarus fasciatus	CG	3	2					
11130 Baetis intercalaris	CG	4	42					
13400 Stenacron sp	SC	4	6					
21200 Calopteryx sp	PR	4	20					
52200 Cheumatopsyche sp	CF	6	98					
52530 Hydropsyche depravata group	CF	5	4					
69400 Stenelmis sp	SC	7	13					
74100 Simulium sp	CF	6	47					
77500 Conchapelopia sp	PR	6	2					
77750 Hayesomyia senata or Thienemannimyia norena		5	1					
78655 Procladius (Holotanypus) sp	PR	8	3					
81825 Rheocricotopus (Psilocricotopus) robacki	CG	6	5					
84450 Polypedilum (Uresipedilum) flavum	SH	6	20					
84460 Polypedilum (P.) fallax group	SH	6	3					
84470 Polypedilum (P.) illinoense	SH	6	7					
84540 Polypedilum (Tripodura) scalaenum group	n SH	6	1					
84700 Stenochironomus sp	SH	3	1					
85625 Rheotanytarsus sp	CF	6	1					
98001 Pisidiidae		5	5					
No. Quantitative Taxa: 21 Number of Organisms: 294	Total T mIBI:	axa:	21 39.78					

Site:						Site	e ID: 15-4			
	ction Date: 08/23/2017	River C	ode. 9	95-707	River: Kildee	r Creek	Sample:		RM:	C
Taxa			040.0					F		
Code	Таха	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха		Feed Grp	Tol.	Qt./QI
01801	Turbellaria	PR	6	5						
03600	Oligochaeta	CG	10	23						
)5800	Caecidotea sp	CG	6	2						
06201	Hyalella azteca	CG	5	168						
06700	Crangonyx sp	CG	4	3						
3400	Stenacron sp	SC	4	2						
13521	Stenonema femoratum	SC	4	1						
7200	Caenis sp	CG	6	2						
22001	Coenagrionidae	PR	5	22						
22300	Argia sp	PR	5	3						
43300	Ranatra sp	PR	99	2						
52200	Cheumatopsyche sp	CF	6	3						
68700	Dubiraphia sp	CG	5	14						
69400	Stenelmis sp	SC	7	2						
7120	Ablabesmyia mallochi	CG	6	1						
78655	Procladius (Holotanypus) sp	PR	8	10						
78680	Procladius (Psilotanypus) bellus	PR	8	1						
31231	Nanocladius (N.) crassicornus or N "rectinervis"	l. (N.) CG	3	1						
32730	Chironomus (C.) decorus group	CG	11	1						
32880	Cryptotendipes sp	CG	6	3						
33002	Dicrotendipes modestus	CG	6	3						
33051	Dicrotendipes simpsoni	CG	6	7						
33150	Endochironomus sp	SH	6	1						
33300	Glyptotendipes (G.) sp	CF	10	19						
34000	Parachironomus sp	PR	8	3						
34400	Polypedilum sp	SH	6	1						
34470	Polypedilum (P.) illinoense	SH	6	5						
	Tanytarsus sp	CF	7	3						
	Hydrobiidae	SC	6	1						
	Pisidium sp	CF	5	9						
	Sphaerium sp	CG	5	5						
No. G	Quantitative Taxa: 31	Total T	axa:	31						
	per of Organisms: 326	mIBI:		32.96						

Site:	Site: Dst. Aptakapsic Rd.; W of N. Buffalo Grove Rd., Twir				ns Cr Prk.	Site ID: Sampl	18-5 e: G		
Collec	ction Date: 08/22/2017 F	River C	ode: 9	95-712	River: Unnar	ned Trib to Aptakisic C	reek	RM:	0.05
Taxa Code	Таха	Feed Grp		Qt./QI.	Taxa Code	Таха	Fee Grp	d > Tol.	Qt./QI.
01801	Turbellaria	PR	6	40					
03600	Oligochaeta	CG	10	31					
04664	Helobdella stagnalis	PR	8	3					
04666	Helobdella papillata	PA	8	5					
04935	Erpobdella punctata punctata	PR	8	2					
17200	Caenis sp	CG	6	1					
22001	Coenagrionidae	PR	5	2					
69901	Curculionidae	SH	99	1					
77130	Ablabesmyia rhamphe group	CG	6	5					
77500	Conchapelopia sp	PR	6	3					
78655	Procladius (Holotanypus) sp	PR	8	3					
81231	Nanocladius (N.) crassicornus or N. ("rectinervis"	N.) CG	3	1					
82820	Cryptochironomus sp	PR	8	1					
82880	Cryptotendipes sp	CG	6	2					
83051	Dicrotendipes simpsoni	CG	6	6					
84210	Paratendipes albimanus or P. duplica	itus CG	3	3					
84315	Phaenopsectra flavipes	SC	4	5					
84450	Polypedilum (Uresipedilum) flavum	SH	6	11					
84470	Polypedilum (P.) illinoense	SH	6	8					
84520	Polypedilum (Tripodura) halterale gro	up SH	6	9					
84540	Polypedilum (Tripodura) scalaenum group	SH	6	5					
85400	Micropsectra sp	CG	4	1					
85800	Tanytarsus sp	CF	7	1					
85814	Tanytarsus glabrescens group		7	1					
92201	Valvatidae		0	1					
93200	Hydrobiidae	SC	6	7					
93900	Elimia sp	SC	6	1					
95900	Gyraulus sp	SC	6	1					
96100	Menetus (Micromenetus) sp	SC	6	1					
98001	Pisidiidae		5	121					
No. C	Quantitative Taxa: 30	Total T	axa:	30					
	•••	mIBI:		26.07					

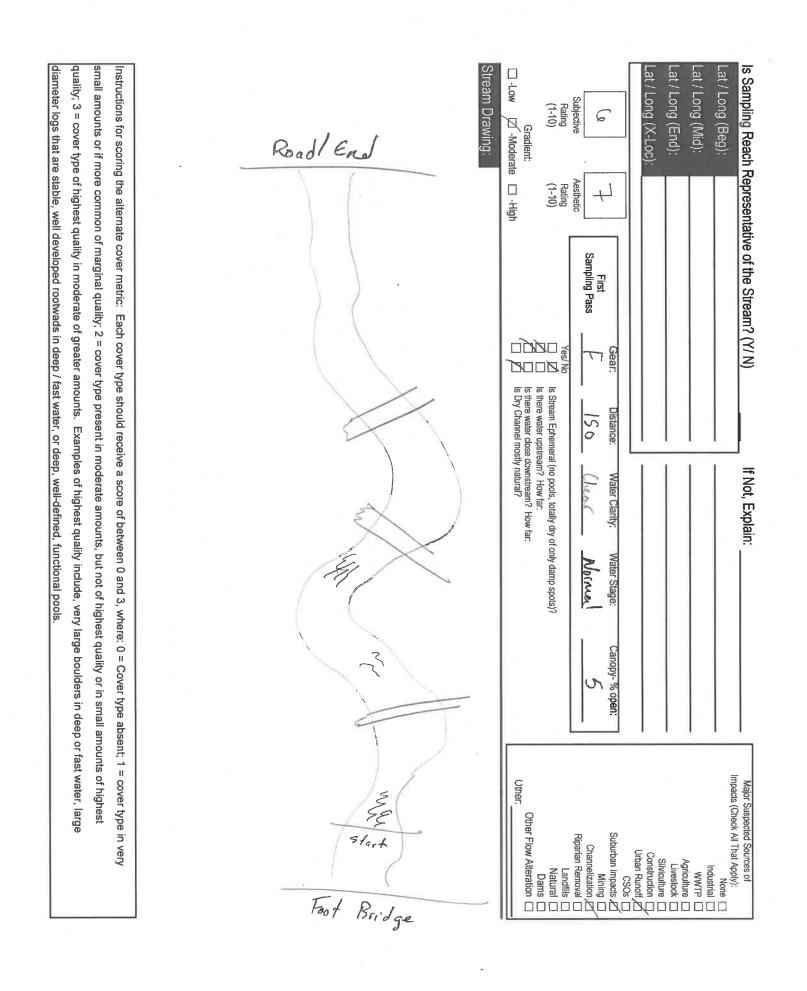
Site:	Lake Cook Rd @ Buffalo Cre	ek Trib				Site ID:	17-4			
						Samp				
Colle	ction Date: 08/23/2017	River Co	ode: 9	95-713	River: UT to	Buffalo Creek @ RM	XX.X		RM:	0.68
Taxa Code	Таха	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха		Feed Grp	Tol.	Qt./Ql.
01801	Turbellaria	PR	6	20						
03600	Oligochaeta	CG	10	23						
05800	Caecidotea sp	CG	6	13						
06201	Hyalella azteca	CG	5	174						
06700	Crangonyx sp	CG	4	5						
11130	Baetis intercalaris	CG	4	2						
17200	Caenis sp	CG	6	2						
22001	Coenagrionidae	PR	5	37						
22300	Argia sp	PR	5	3						
52200	Cheumatopsyche sp	CF	6	2						
69400	Stenelmis sp	SC	7	14						
77120	Ablabesmyia mallochi	CG	6	2						
77500	Conchapelopia sp	PR	6	3						
78140	Labrundinia pilosella	PR	4	2						
78655	Procladius (Holotanypus) sp	PR	8	3						
81231	Nanocladius (N.) crassicornus or N. "rectinervis"	(N.) CG	3	1						
82820	Cryptochironomus sp	PR	8	2						
83040	Dicrotendipes neomodestus	CG	6	3						
84210	Paratendipes albimanus or P. duplic	atus CG	3	1						
84450	Polypedilum (Uresipedilum) flavum	SH	6	5						
84470	Polypedilum (P.) illinoense	SH	6	16						
84540	Polypedilum (Tripodura) scalaenum group	SH	6	5						
85500	Paratanytarsus sp	CG	6	1						
85625	Rheotanytarsus sp	CF	6	4						
96120	Menetus (Micromenetus) dilatatus	SC	6	2						
98600	Sphaerium sp	CG	5	6						
No. C	Quantitative Taxa: 26	Total T	axa:	26						
Num	per of Organisms: 351	mIBI:		31.21						

Citor	Cilmor Dd					Site ID:	15-10		
Sile.	Gilmer Rd.					Sam	ple: P		
Colle	ction Date: 08/24/2017	River Co	ode: 9	95-717	River: W. Br	ranch Indian Creek		RM:	0.80
Taxa Code	Таха	Feed Grp	Tol.	Qt./QI.	Taxa Code	Таха	Feed Grp	Tol.	Qt./QI.
01801	Turbellaria	PR	6	3					
03600	Oligochaeta	CG	10	13					
04666	Helobdella papillata	PA	8	1					
05800	Caecidotea sp	CG	6	69					
06501	Gammaridae	CG	4	11					
22001	Coenagrionidae	PR	5	2					
77500	Conchapelopia sp	PR	6	8					
82820	Cryptochironomus sp	PR	8	3					
83300	Glyptotendipes (G.) sp	CF	10	3					
84210	Paratendipes albimanus or P. duplic	atus CG	3	2					
84450	Polypedilum (Uresipedilum) flavum	SH	6	56					
84470	Polypedilum (P.) illinoense	SH	6	3					
84540	Polypedilum (Tripodura) scalaenum group	SH	6	13					
85800	Tanytarsus sp	CF	7	1					
92310	Valvata bicarinata		0	2					
98200	Pisidium sp	CF	5	34					
98600	Sphaerium sp	CG	5	62					
	Quantitative Taxa: 17 ber of Organisms: 286	Total T mIBI:	axa:	17 18.05					

APPENDIX D

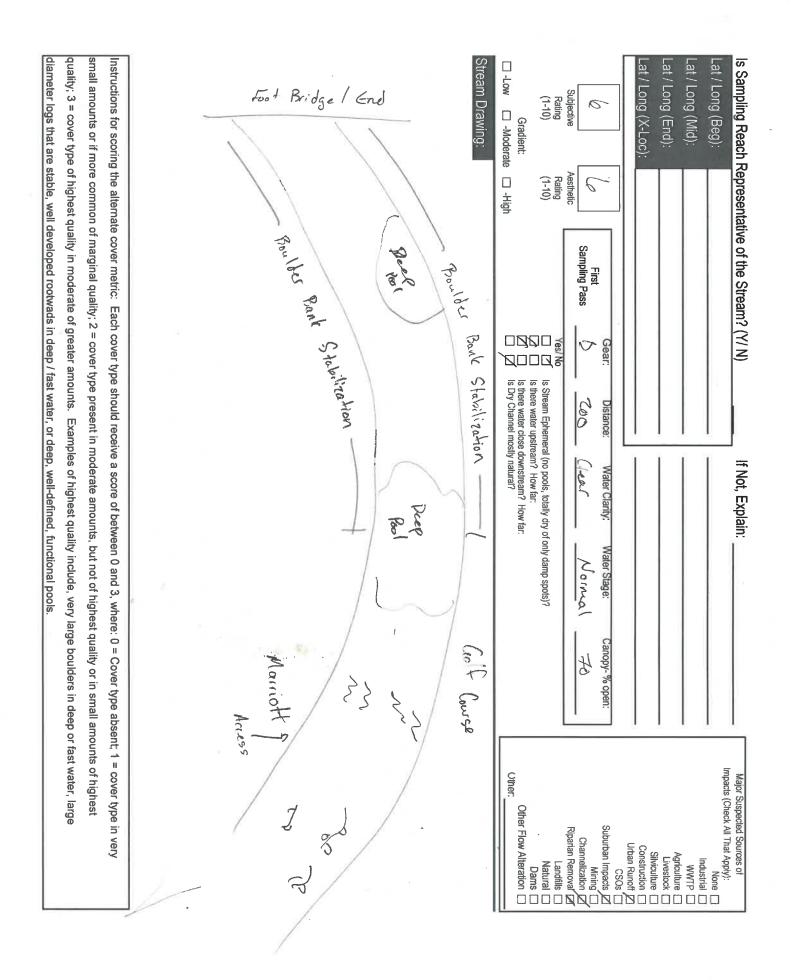
Upper Des Plaines Year 1 2017 Habitat Data

D-1: Upper Des Plaines 2016 QHEI Metrics and Scores D-2: QHEI Field Sheets

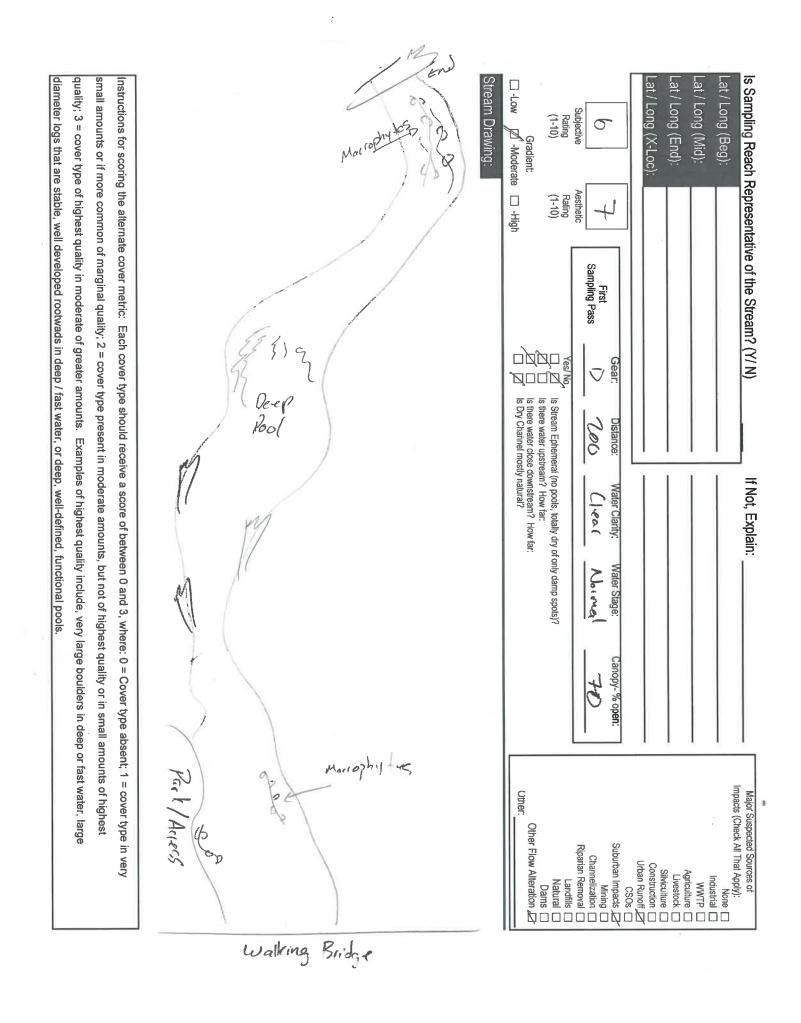

QHEI Metrics:									
River Mile	QHEI	Substrate	eCover	Channel	Riparian	Pool	Riffle	Gradient & Score	Narrative
(95390) Sea Year:2017	vey Drain	age Ditch							
3.66	62.00	11.0	14.0	12.0	5.00	9.0	1.0	25.48 - (10)	Good
0.45	55.00	10.5	14.0	9.0	5.50	5.0	1.0	16.84 - (10)	Fair
(95701) Apta Year:2017	akisic Cree	ek							
4.70	47.00	8.0	13.0	8.0	4.00	4.0	0.0	20.84 - (10)	Fair
4.30	55.50	12.0	13.0	8.5	4.00	6.0	2.0	18.14 - (10)	Fair
0.80	45.00	4.5	15.0	8.0	3.50	6.0	0.0	10.70 - (8)	Fair
0.50	48.00	9.0	14.0	6.0	5.00	6.0	0.0	10.37 - (8)	Fair
 (95703) Buff Year:2017	alo Creek	_ <u></u>							
14.00	63.00	14.0	14.0	14.0	5.00	4.0	4.0	38.18 - (8)	Good
7.70	73.00	14.0	16.0	14.0	9.00	8.0	2.0	17.56 - (10)	Good
6.10	64.25	14.0	17.0	12.0	4.25	7.0	0.0	17.28 - (10)	Good
0.75	46.50	12.0	11.0	6.0	4.50	3.0	0.0	15.83 - (10)	Fair
(95705) Fore Year:2017	est Lake D	Drain							
0.83	48.25	2.0	11.0	11.5	6.75	4.0	5.0	38.51 - (8)	Fair
(95706) Indi Year:2017	an Creek								
10.83	55.50	10.0	12.0	13.0	6.50	3.0	1.0	22.55 - (10)	Fair
9.83	59.50	14.0	14.0	11.0	5.00	4.0	1.5	21.94 - (10)	Fair
5.40	66.50	12.0	15.0	12.0	5.00	9.0	3.5	16.00 - (10)	Good
2.41	73.00	12.0	17.0	14.0	5.00	10.0	5.0	15.13 - (10)	Good
0.17	65.00	14.0	14.0	11.0	4.50	8.0	3.5	12.87 - (10)	Good
(95707) Kild Year:2017	eer Creek								
5.20	41.50	4.0	11.0	11.0	4.50	7.0	0.0	43.04 - (4)	Poor
4.60	48.50	9.0	13.0	12.0	5.50	4.0	1.0	40.83 - (4)	Fair
2.21	61.00	10.0	14.0	13.0	8.00	6.0	2.0	31.36 - (8)	Good
0.01	53.50	4.0	15.0	13.0	4.50	6.0	1.0	23.96 - (10)	Fair
	amed Trik	o to Aptaki	sic Cree	ek @ RM	4.64				
0.05	43.50	6.0	12.0	8.5	4.00	3.0	0.0	19.34 - (10)	Poor

Appendix D-1. QHEI metric scores for sites sampled in the Des Plaines River study area by MBI during 2017

Appendix D-1. QHEI metric scores for sites sampled in the Des Plaines River study area by MBI during 2017.

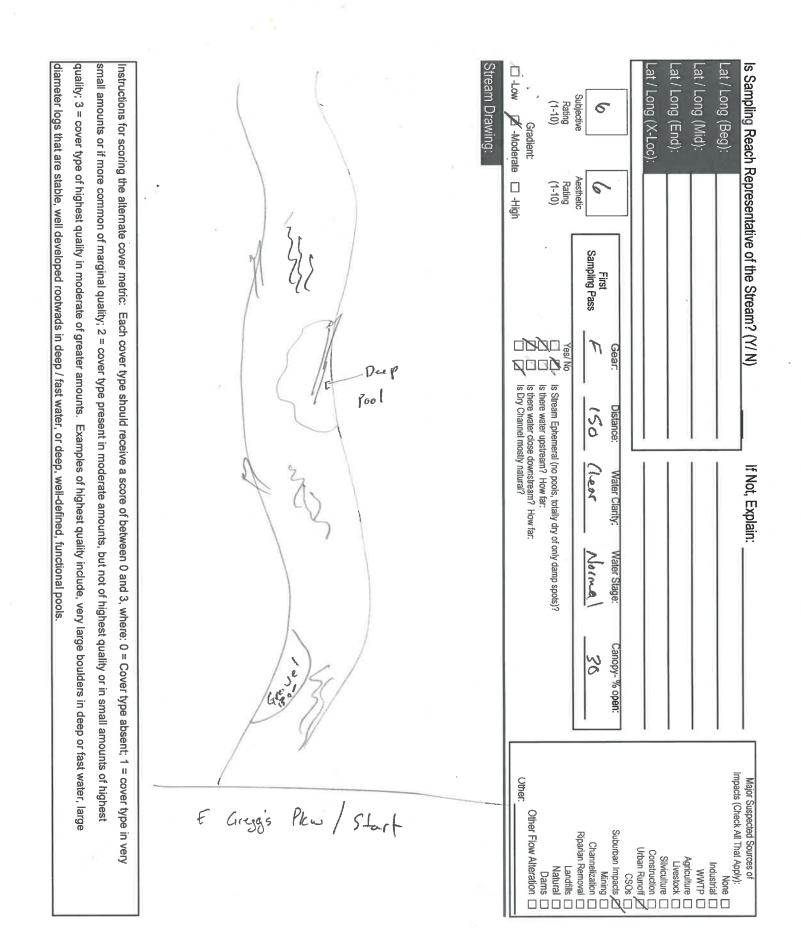

			QHEI Metrics:									
River Mile	QHEI	Substrate	eCover	Channel	Riparian	Pool	Riffle	Gradient & Score	Narrative			
(95713) Unn Year:2017	amed Trik	o to Buffalo) Creek	@ RM 7	.56							
0.68	57.50	10.5	13.0	11.0	4.00	8.0	1.0	20.09 - (10)	Fair			
0.80	58.50	14.0	14.0	13.0	5.00	4.0	0.5	34.19 - (8)	Fair			

📰 🖤 🔳 🔤 🖉 🗃 Institute	^{ity} Qualitative	Habita	at Evaluation Index I	Field Sheet	QHEI Score: へか
River Code: 95-703	RM: 7.70	Stream:	Buffalo Creek		
Site Code: 17-3	Project Code: DRWWI7				
Date: 8-24-17	Scorer: MAS	Latitude:	42.15952	Longitude:7.99047	
.) SUBSTRATE (Check ONLY Tw	to Substrate TYPE BOXES; Estimate % pe	ercent			
YPE POOL		POOL	RIFFLE SUBSTRATE ORIGIN	SUBSTRATE QUALITY	
-BLDR/SLBS [10]	GRAVEL [7]		Check ONE (OR 2 & AVE	RAGE) Check ONE (OR 2 & A)	/ERAGE)
- Lg BOULD [10]	SAND [6]		LIMESTONE [1]	SILT: SILT HEAVY [-2]	Substrat
	🗀 🗀 -BEDROCK [5]		🗹 -TILLS [1]	SILT MODERATI	E[1]
	🖸 🗂 -DETRITUS [3]		-WETLANDS [0]	SILT NORMAL [0	1 14
	🖂 🖂 -ARTIFICIAL [0]		HARDPAN [0]	SILT FREE [1]	Max 20
MUCK [2]	🗆 🗔 -SILT [2]		SANDSTONE [0]	EMBEDDED -EXTENSIVE [-2]	
			-RIP / RAP [0]	NESS: O -MODERATE [-1]	
IUMBER OF SUBSTRATE TYPES	-4 or More [2]		-LACUSTRINE [0]	NORMAL [0]	
High Quality Only, Score 5 or >)	2 🖂 -3 or Less [0]		-SHALE [-1]	-NONE [1]	
OLMENTO.			-COAL FINES [-2]		
OMMENTS:	cover type a score of 0 to 3; see back for	instructions)		AMOUNT: (Charl	
, (Structure)	TYPE: Score All That Occur			<u>AMOUNT</u> : (Checl check 2 and AVEF	
UNDERCUT BANKS [1]	/ POOLS > 70 cm [2	~ ~	OXBOWS, BACKWATERS [1]	-EXTENSIVE > 75	
OVERHANGING VEGETAT		-	AQUATIC MACROPHYTES [1]	-MODERATE 25 -	
3 SHALLOWS (IN SLOW WA	TER) [1]BOULDERS [1]	3	LOGS OR WOODY DEBRIS [1]	-SPARSE 5 - 25%	
ROOTMATS [1]				-NEARLY ABSEN	T < 5% [1]
OMMENTS:					
	heck ONLY one PER Category OR check		,		
	DEVELOPMENT CHANNELIZ		STABILTIY	MODIFICATIONS / OTHER	
	-EXCELLENT [7] -NONE		-HIGH [3]		MPOUNDMENT Channe
/ /	Z -GOOD [5] Z -RECO\ ∃ -FAIR [3] □ -RECO\		-MODERATE [2]		EVEED
	-POOR [1] -RECEN	/ERING [3]	´ 🗋 -LOW [1]		EVEED Max 20
		ERY [1]			
	112001				
		NDED [-1]		_	
OMMENTS:	-IMPOU	NDED [-1]			
-				E4	
) RIPARIAN ZONE AND BANK E	-IMPOU -IM -IMPOU -IM		VERAGE per bank)	River Right Looking Downstream	M
.) RIPARIAN ZONE AND BANK EI IPARIAN WIDTH	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/	heck 2 and A ALITY (PAST	100 Meter RIPARIAN)	BANK EROSION	節
.) RIPARIAN ZONE AND BANK EN IPARIAN WIDTH L R (Per Bank)	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank	heck 2 and A ALITY (PAST	<u>100 Meter RIPARIAN)</u> L R	BANK EROSION L R (Per Ban	(f) (f) Ik) Riparia
.) RIPARIAN ZONE AND BANK EF IPARIAN WIDTH L R (Per Bank) ☑ ☑ -VERY WIDE > 100m [5]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank P -FOREST, SWAMP [3]	heck 2 and A ALITY (<i>PAST</i> k)	<u>100 Meter RIPARIAN)</u> L R ⊡ ⊡ -CONSERVATION TILLAG	BANK EROSION L R (Per Bar BE [1]	k) Riperia UTTLE [3]
<u>RIPARIAN ZONE AND BANK EF</u> <u>IPARIAN WIDTH</u> _ R (Per Bank)	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank P -FOREST, SWAMP [3] G -SHRUB OR OLD FIELD [2]	heck 2 and A ALITY (PAST K)	<u>100 Meter RIPARIAN)</u> L R CONSERVATION TILLAG C - URBAN OR INDUSTRIAL	BANK EROSION L R (Per Ban SE [1] - NONE / [0] - MODEF	К) Riperia UTTLE [3] ААТЕ [2]
RIPARIAN ZONE AND BANK EF IPARIAN WIDTH - R (Per Bank) - Provide State - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani C -FOREST, SWAMP [3] C -SHRUB OR OLD FIELD [2] C -RESIDENTIAL, PARK, NEV	heck 2 and A ALITY (PAST K)	100 Meter RIPARIAN) L R Image: Conservation tillage Image: Conservationtill	BANK EROSION L R Fer Ban - NONE / Image: SE [1] - NONE / Image: Se [1]	К) IITTLE [3] ATTE [2] К К К К К К К К К К К К К
RIPARIAN ZONE AND BANK Ef IPARIAN WIDTH - R (Per Bank) - VERY WIDE > 100m [5] - -WIDE > 50m [4] - -MODERATE 10 - 50m [3] - -NARROW 5 - 10m [2]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank P -FOREST, SWAMP [3] G -SHRUB OR OLD FIELD [2]	heck 2 and A ALITY (PAST K)	<u>100 Meter RIPARIAN)</u> L R CONSERVATION TILLAG C - URBAN OR INDUSTRIAL	BANK EROSION L R Fer Ban - NONE / Image: SE [1] - NONE / Image: Se [1]	к) Riparia UTTLE [3] ААТЕ [2]
RIPARIAN ZONE AND BANK Ef PARIAN WIDTH . R (Per Bank)	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani P - FOREST, SWAMP [3] BSHRUB OR OLD FIELD [2] P - RESIDENTIAL, PARK, NEV B - FENCED PASTURE [1]	heck 2 and A ALITY (PAST K)	100 Meter RIPARIAN) L R Image: Conservation tillage Image: Conservationtill	BANK EROSION L R Fer Ban - NONE / Image: SE [1] - NONE / Image: Se [1]	к) Riparia UTTLE [3] ААТЕ [2]
RIPARIAN ZONE AND BANK Ef PARIAN WIDTH . R (Per Bank)	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani C -FOREST, SWAMP [3] C -SHRUB OR OLD FIELD [2] C -RESIDENTIAL, PARK, NEV	heck 2 and A ALITY (PAST K)	100 Meter RIPARIAN) L R Image: Conservation tillage Image: Conservationtill	BANK EROSION L R Fer Ban - NONE / Image: SE [1] - NONE / Image: Se [1]	к) Riparia UTTLE [3] ААТЕ [2]
RIPARIAN ZONE AND BANK Ef PARIAN WIDTH . R (Per Bank)	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS:	heck 2 and A ALITY (PAST K)	100 Meter RIPARIAN) L R Image: Conservation tillage Image: Conservationtill	BANK EROSION L R Fer Ban - NONE / Image: SE [1] - NONE / Image: Se [1]	к) Riparia UTTLE [3] ААТЕ [2]
NIPARIAN ZONE AND BANK Ef PARIAN WIDTH - R (Per Bank) - - <t< td=""><td>ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS:</td><td>heck 2 and A ALITY (PAST K)</td><td>100 Meter RIPARIAN) L R Image: Conservation tillage Image: Conservationtillage</td></t<> <td>BANK EROSION L R Fer Ban - NONE / Image: SE [1] - NONE / Image: Se [1]</td> <td>к) Riparia UTTLE [3] ААТЕ [2]</td>	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS:	heck 2 and A ALITY (PAST K)	100 Meter RIPARIAN) L R Image: Conservation tillage Image: Conservationtillage	BANK EROSION L R Fer Ban - NONE / Image: SE [1] - NONE / Image: Se [1]	к) Riparia UTTLE [3] ААТЕ [2]
RIPARIAN ZONE AND BANK EF IPARIAN WIDTH R (Per Bank) - VERY WIDE > 100m [5] - WIDE > 50m [4] - MODERATE 10 - 50m [3] - NARROW 5 - 10m [2] - VERY NARROW < 5m [1]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEV FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE	heck 2 and A\ A <u>LITY (PAST</u> k) V FIELD [1]	100 Meter RIPARIAN) L R	BANK EROSION L R (Per Ban E [1]	IN Riparia UTTLE [3] VATE [2] / SEVERE [1] Max 10
) RIPARIAN ZONE AND BANK EI IPARIAN WIDTH - R (Per Bank) □ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI	heck 2 and A A <u>LITY (PAST</u> k) V FIELD [1]))))))))))	100 Meter RIPARIAN) L R CONSERVATION TILLAGE O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWCE O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A -EDDIES [1]	BANK EROSION L R (Per Ban BE [1] □ .00 □ .01 □ .02 □ .03 □ .04 □ .05 □ .00 □ .00 □ .00 □ .00 □ .01 □ .02 □ .03 □ .04 □ .05 0.00 .06 0.00 .07 □ .08 RIFFLESI) .09 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ .00 □ <td>IN Riparia ITTLE [3] VATE [2] / SEVERE [1] Max 10 Pool /</td>	IN Riparia ITTLE [3] VATE [2] / SEVERE [1] Max 10 Pool /
	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS: UN QUALITY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI - POOL WIDTH = RIFFLE WI	heck 2 and A A <u>LITY (PAST</u> k) V FIELD [1]))))))))))))))))))))))))))	100 Meter RIPARIAN) L R R R R R R Rows Image: Construction Tillage Rows Labele Rows Labele Rows Rows Rows Rows Rows Rows Rows<	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY I' (POOLS & RIFFLESI)	It) ITTLE [3] VATE [2] / SEVERE [1] Pool / Current
	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS: UN QUALITY (Check 1 or 2 & AVERAGE - POOL WIDTH > RIFFLE WI - POOL WIDTH > RIFFLE WI - POOL WIDTH < RIFFLE WI	heck 2 and A A <u>LITY (PAST</u> k) V FIELD [1]))))))))))))))))))))))))))	100 Meter RIPARIAN) L R R CONSERVATION TILLAG O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A -EDDIES [1] -FAST [1] -MODERATE [1]	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLESI) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2]	k) Riparia LITTLE [3] XATE [2] / SEVERE [1] Max 10 Pool / Current
IPARIAN ZONE AND BANK EI IPARIAN WIDTH R (Per Bank) -VERY WIDE > 100m [5] -WIDE > 50m [4] -MODERATE 10 - 50m [3] -NARROW 5 - 10m [2] -NARROW 5 - 10m [2] -NONE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH Check 1 ONLY!) -1m [6] -0.7m [4] -0.2 to 0.4m [1]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS: UN QUALITY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI - POOL WIDTH = RIFFLE WI	heck 2 and A A <u>LITY (PAST</u> k) V FIELD [1]))))))))))))))))))))))))))	100 Meter RIPARIAN) L R R R R Rows URBAN OR INDUSTRIAL OPEN PASTURE, ROWC Rows MINING / CONSTRUCTION CURRENT VELOCIT (Check A -EDDIES [1] -FAST [1] -SLOW [1]	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY I' (POOLS & RIFFLESI)	It) ITTLE [3] VATE [2] / SEVERE [1] Pool / Current
NIPARIAN ZONE AND BANK Ef PARIAN WIDTH . R (Per Bank) -VERY WIDE > 100m [5] -WIDE > 50m [4] -MODERATE 10 - 50m [3] -NARROW 5 - 10m [2] -VERY NARROW 5 - 10m [2] -VERY NARROW 5 - 10m [2] -NONE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH heck 1 ONLYI) - 1m [6] - 0.7m [4] - 0.2 to 0.4m [1] - < 0.2m [POOL = 0]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS: UN QUALITY (Check 1 or 2 & AVERAGE - POOL WIDTH > RIFFLE WI - POOL WIDTH > RIFFLE WI - POOL WIDTH < RIFFLE WI	heck 2 and A A <u>LITY (PAST</u> k) V FIELD [1]))))))))))))))))))))))))))	100 Meter RIPARIAN) L R R CONSERVATION TILLAG O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A -EDDIES [1] -FAST [1] -MODERATE [1]	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLESI) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2]	k) Riparia LITTLE [3] XATE [2] / SEVERE [1] Max 10 Pool / Current
RIPARIAN ZONE AND BANK EF PARIAN WIDTH R (Per Bank) VERY WIDE > 100m [5] -WIDE > 50m [4] -MODERATE 10 - 50m [3] -NARROW 5 - 10m [2] -VERY NARROW 5 - 10m [2] -VERY NARROW 5 - 10m [2] -NONE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH heck 1 ONLYI) - 1m [6] - 0.7m [4] - 0.2 to 0.4m [1] - < 0.2m (POOL = 0)	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani - FOREST, SWAMP [3] - SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEV - FENCED PASTURE [1] COMMENTS: UN QUALITY (Check 1 or 2 & AVERAGE - POOL WIDTH > RIFFLE WI - POOL WIDTH > RIFFLE WI - POOL WIDTH < RIFFLE WI	heck 2 and A A <u>LITY (PAST</u> k) V FIELD [1]))))))))))))))))))))))))))	100 Meter RIPARIAN) L R R R R Rows URBAN OR INDUSTRIAL OPEN PASTURE, ROWC Rows MINING / CONSTRUCTION CURRENT VELOCIT (Check A -EDDIES [1] -FAST [1] -SLOW [1]	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLESI) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2]	k) Riparia LITTLE [3] XATE [2] / SEVERE [1] Max 10 Pool / Curren
NIPARIAN ZONE AND BANK Ef PARIAN WIDTH . R (Per Bank) -VERY WIDE > 100m [5] -WIDE > 50m [4] -MODERATE 10 - 50m [3] -NARROW 5 - 10m [2] -VERY NARROW 5 - 10m [2] -VERY NARROW 5 - 10m [2] -NONE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH heck 1 ONLYI) - 1m [6] - 0.7m [4] - 0.2 to 0.4m [1] - < 0.2m [POOL = 0]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH < RIFFLE WI -IMPOUNDED [-1]	heck 2 and A ALITY <i>(PAST</i> k) V FIELD [1] DTH [2] DTH [2] DTH [0]	100 Meter RIPARIAN) L R Image: Conservation tillage Image: URBAN OR INDUSTRIAL Image: OPEN PASTURE, ROWC Image: OPEN PASTURE, ROWC<	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLESI) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2]	k) Riparia LITTLE [3] XATE [2] / SEVERE [1] Max 10 Pool / Current Max 12
RIPARIAN ZONE AND BANK EF PARIAN WIDTH . R (Per Bank) VERY WIDE > 100m [5] VIDE > 50m [4] NODERATE 10 - 50m [3] NARROW 5 - 10m [2] VERY NARROW < 5m [1]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH < RIFFLE WI -IMPOUNDED [-1]	heck 2 and A ALITY (PAST k) V FIELD [1] DTH [2] DTH [2] DTH [1] DTH [0] DR CHECK 2	100 Meter RIPARIAN) L R R R R Rows URBAN OR INDUSTRIAL OPEN PASTURE, ROWC OPEN PASTURE, ROWC HINING / CONSTRUCTION CURRENT VELOCIT (Check A -EDDIES [1] -FAST [1] -MODERATE [1] SLOW [1]	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLESI) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2]	Image: Second system Riparial Intrue [3] Image: Second system Variation [2] Max 10 Variation [2] Max 10 Image: Second system Max 12 Image: Second system Max 12 Image: Second system Riffle / Riftle / Ri
RIPARIAN ZONE AND BANK EF PARIAN WIDTH . R (Per Bank) VERY WIDE > 100m [5] VIDE > 50m [4] NODERATE 10 - 50m [3] NARROW 5 - 10m [2] VERY NARROW < 5m [1]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bani -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -IMPOUNDED [-1] CHECK ONE C RUN DEPTH - MAX > 50 cm [2]	heck 2 and A ALITY (<i>PAST</i> k) V FIELD (1] DTH [2] DTH [2] DTH [0] CHECK 2 <u>RIFFLE / 1</u> -STABLE (100 Meter RIPARIAN) L R CONSERVATION TILLAC O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A O -FAST [1] O -NONE [-1] -NONE [-1]	BANK EROSION L R (Per Ban BE [1] NONE / [0] MODEF ROP [0] HEAVY NN [0] HEAVY Y (POOLS & RIFFLESI) HEAVY II That Apply) TORRENTIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERMITTENT [-2] VERY FAST [1]	k) Riparia LITTLE [3] XATE [2] / SEVERE [1] Max 10 Pool / Current Max 12
> RIPARIAN ZONE AND BANK Ef IPARIAN WIDTH - R (Per Bank) - WIDE > 50m [4] - MODERATE 10 - 50m [3] - NODERATE 10 - 50m [2] - VERY NARROW 5 - 10m [2] - VERY NARROW 5 - 10m [2] - VERY NARROW 5 - 10m [2] - NONE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH - 60.7 m [4] - 0.7 m [4] - 0.7 m [4] - 0.2 to 0.4 m [1] - 0.2 to 0.4 m [1] - 0.2 to 0.4 m [2] - SBest Areas > 10cm [2] - Best Areas 5 - 10cm [1]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH < RIFFLE WI -POOL WIDTH < RIFFLE WI -POOL WIDTH < RIFFLE WI -IMPOUNDED [-1]	heck 2 and A ALITY (<i>PAST</i> k) V FIELD (1] DTH [2] DTH [2] DTH [0] DTH [0] DTH [0] DTH [0] CHECK 2 RIFFLE / 1 J -STABLE (-MOD. ST/	100 Meter RIPARIAN) L R CONSERVATION TILLAC O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A O -FAST [1] -FAST [1] O -FAST [1] O -FAST [1] O -FAST [1] O -FODERATE [1] O -SLOW [1] O -NONE [-1]	BANK EROSION L R (Per Ban BE [1]	Image: Second system Riparial Intrue [3] Image: Second system Variation [2] Max 10 Variation [2] Max 10 Image: Second system Max 12 Image: Second system Max 12 Image: Second system Riffle / Riftle / Ri
) RIPARIAN ZONE AND BANK EF IPARIAN WIDTH L R (Per Bank) □ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [2] □ -MODERATE 10 - 50m [2] □ -MODERATE 10 - 50m [2] □ -NARROW 5 - 10m [2] □ -NARROW 5 - 10m [2] □ -NONE [0]) POOL / GLIDE AND RIFFLE / RI AX. DEPTH □ -0.7m [4] □ -0.7m [2] □ -0.7m [2] □ -0.2 to 0.4m [1] □ -0.2m [POOL = 0] OMMENTS:	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -RUN DEPTH -MAX > 50 cm [2]	heck 2 and A ALITY (<i>PAST</i> k) V FIELD (1] DTH [2] DTH [2] DTH [0] DTH [0] DTH [0] DTH [0] CHECK 2 RIFFLE / 1 J -STABLE (-MOD. ST/	100 Meter RIPARIAN) L R CONSERVATION TILLAC O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A O -FAST [1] O -NONE [-1] -NONE [-1]	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLES!) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2] - VERY FAST [1] - NONE [2] - NONE [2] - LOW [1] - HODERATE [0] - MODERATE [0]	k) LITTLE [3] VATE [2] / SEVERE [1] Pool / Current S Max 12 Riffle / Ru Pool / Current Max 12
RIPARIAN ZONE AND BANK Ef IPARIAN WIDTH R (Per Bank) - VERY WIDE > 100m [5] - WIDE > 50m [4] - MODERATE 10 - 50m [3] - MODERATE 10 - 50m [2] - NARROW 5 - 10m [2] - NARROW 5 - 10m [2] - NONE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH - 0.7m [4] - 0.7m [4] - 0.7m [4] - 0.7m [4] - 0.2 to 0.4m [1] - 0.2 to 0.4m [1] 2 to 0.4m [1] - *Best Areas > 10cm [2] - Best Areas > 10cm [2] - Best Areas > 5 - 10cm [1] - NO RIFFLE but RUNS pres	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WI	heck 2 and A ALITY (<i>PAST</i> k) V FIELD (1] DTH [2] DTH [2] DTH [0] DTH [0] DTH [0] DTH [0] CHECK 2 RIFFLE / 1 J -STABLE (-MOD. ST/	100 Meter RIPARIAN) L R CONSERVATION TILLAC O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A O -FAST [1] -FAST [1] O -FAST [1] O -FAST [1] O -FAST [1] O -FODERATE [1] O -SLOW [1] O -NONE [-1]	BANK EROSION L R (Per Ban SE [1] - NONE / [0] - MODEF ROP [0] - HEAVY IN [0] - HEAVY W (0) - HEAVY Y (POOLS & RIFFLESI) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2] - very FAST [1] - NONE [2] - NONE [2] - LOW [1]	k) LITTLE [3] VATE [2] / SEVERE [1] Pool / Current S Max 12 Riffle / Ru Pool / Current Max 12
) RIPARIAN ZONE AND BANK EF IPARIAN WIDTH - R (Per Bank) - VERY WIDE > 100m [5] - HODERATE 10 - 50m [4] - MODERATE 10 - 50m [2] - NARROW 5 - 10m [2] - NARROW 5 - 10m [2] - NORE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH - 0.7m [4] - 0.2 to 0.4m [1] - < 0.2m [POOL = 0]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WI	heck 2 and A ALITY (<i>PAST</i> k) V FIELD (1] DTH [2] DTH [2] DTH [0] DTH [0] DTH [0] DTH [0] CHECK 2 RIFFLE / 1 J -STABLE (-MOD. ST/	100 Meter RIPARIAN) L R CONSERVATION TILLAC O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A O -FAST [1] -FAST [1] O -FAST [1] O -FAST [1] O -FAST [1] O -FODERATE [1] O -SLOW [1] O -NONE [-1]	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLES!) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2] - VERY FAST [1] - NONE [2] - NONE [2] - LOW [1] - HODERATE [0] - MODERATE [0]	Riparia LITTLE [3] VATE [2] / SEVERE [1] Pool / Curren Max 12 Max 12 Riffle / Ri Riffle / Ri Max 8
RIPARIAN ZONE AND BANK EF IPARIAN WIDTH R (Per Bank) - VERY WIDE > 100m [5] - HODERATE 10 - 50m [4] - MODERATE 10 - 50m [2] - NARROW 5 - 10m [2] - NARROW 5 - 10m [2] - NONE [0] POOL / GLIDE AND RIFFLE / RI AX. DEPTH Check 1 ONLYI) - 1m [6] - 0.7m [4] - 0.7m [4] - 0.2 to 0.4m [1] - 4.0 0.7m [2] - 0.2 to 0.4m [1] - Sest Areas > 10cm [2] - Best Areas > 10cm [2] - NO RIFFLE but RUNS pres - NO RIFFLE / NO RUN [Met DMENTS:	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -MAX > 50 cm [2] -MAX < 50 cm [1] - MAX < 50 cm [1]	heck 2 and A ALITY (PAST K) V FIELD [1] DTH [2] IDTH [2] IDTH [1] IDTH [0] DTH [0] DTH [0] CR CHECK 2 RIFFLE / I STABLE (STABLE	100 Meter RIPARIAN) L R Image: CONSERVATION TILLAC Image: CONSERVE Image: CO	BANK EROSION L R (Per Ban BE [1] - NONE / [0] - MODEF ROP [0] - HEAVY DN [0] - HEAVY DN [0] - HEAVY Y (POOLS & RIFFLES!) - HEAVY II That Apply) - TORRENTIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERSTITIAL [-1] - INTERMITTENT [-2] - VERY FAST [1] - NONE [2] - NONE [2] - LOW [1] - HODERATE [0] - MODERATE [0]	Riperial LITTLE [3] VATE [2] / SEVERE [1] Pool / Current Max 12 Max 12 Riffle / Ri Nax 8
RIPARIAN ZONE AND BANK EF PARIAN WIDTH R (Per Bank) VERY WIDE > 100m [5] -WIDE > 50m [4] -MODERATE 10 - 50m [3] -NARROW 5 - 10m [2] -VERY NARROW < 5m [1]	ROSION (check ONE box PER bank or cl FLOOD PLAIN QU/ L R (Most Predominant Per Bank -FOREST, SWAMP [3] -SHRUB OR OLD FIELD [2] -SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: UN QUALITY MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WI	heck 2 and A ALITY (PAST K) V FIELD [1] DTH [2] IDTH [2] IDTH [1] IDTH [0] DTH [0] DTH [0] CR CHECK 2 RIFFLE / I STABLE (- STABLE (- MOD. STABL	100 Meter RIPARIAN) L R CONSERVATION TILLAC O -URBAN OR INDUSTRIAL O OPEN PASTURE, ROWC O -OPEN PASTURE, ROWC O -MINING / CONSTRUCTION CURRENT VELOCIT (Check A O -FAST [1] -FAST [1] O -FAST [1] O -FAST [1] O -FAST [1] O -FODERATE [1] O -SLOW [1] O -NONE [-1]	BANK EROSION L R (Per Ban SE [1] -NONE / [0] -MODEF ROP [0] -HEAVY DN [0] -HEAVY Y (POOLS & RIFFLES!) -HEAVY II That Apply) -TORRENTIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERMITTENT [-2] -VERY FAST [1] RIFFLE / RUN EMBEDDEDNESS -NONE [2] -LOW [1] -MODERATE [0] -EXTENSIVE [-1] -EXTENSIVE [-1]	Riparia LITTLE [3] VATE [2] / SEVERE [1] Pool / Curren Max 12 Max 12 Riffle / Ri Riffle / Ri Max 8



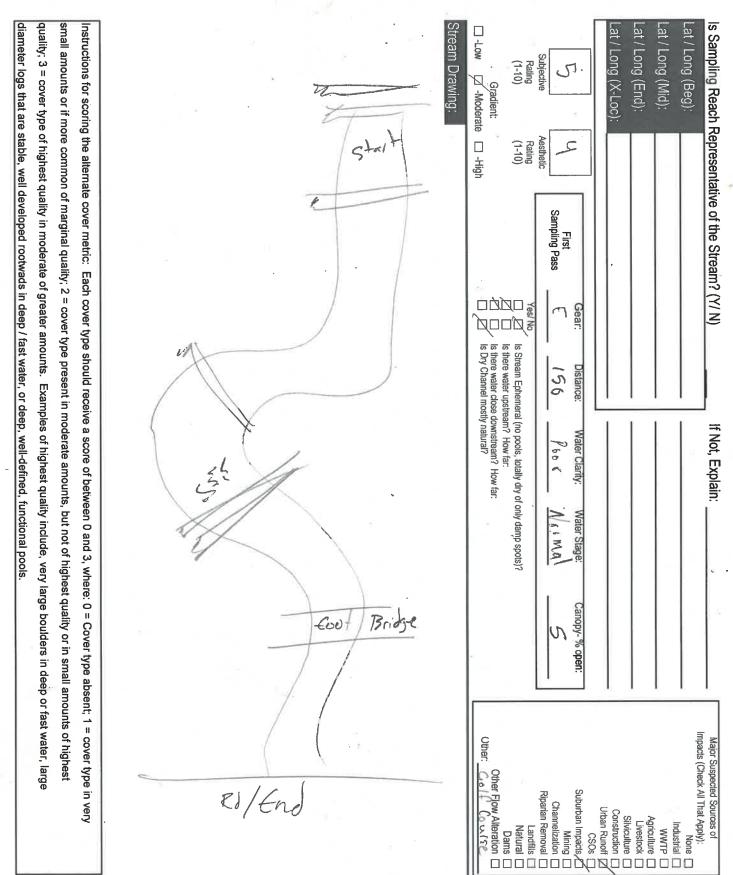
QHEI Score: QHEI Score:	5
River Code: 95-706 RM: 0.17 Stream: Indian Creek	1
Site Code: 15-1 Project Code: DRWWIT Location: U4+ Confluence W/ Drs Plaines Date: 8-25-17 Scorer: MAS Latitude: 42,19810 Longitude: -87,92312	Ω.
	•
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY □ -BLDR/SLBS [10] □ -GRAVEL [7] ✓ ✓ Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE) □ -LIB BOULD [10] □ -GRAVEL [7] ✓ ✓ Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE) □ -LIB BOULDE [10] □ -SAND [6] ✓ □ -LIMESTONE [1] SILT: □ -SILT HEAVY [-2] □ -BOULDER [9] □ -BEDROCK [5] □ -TILLS [1] □ -SILT MODERATE [-1] □ -COBBLE [8] ✓ X □ -DETRITUS [3] □ '-WETLANDS [0] □ -SILT NORMAL [0] □ -HARDPAN [4] □ -ARTIFICIAL [0] □ -HARDPAN [0] □ -SILT FREE [1] □ -SILT FREE [1] □ -MUCK [2] □ -SILT [2] □ -SANDSTONE [0] EMBEDDED -EXTENSIVE [-2] NUMBER OF SUBSTRATE TYPES: □ -4 or More [2] □ -LACUSTRINE [0] □ -NORMAL [0] (High Quality Only, Score 5 or >) □ -3 or Less [0] □ -SHALE [-1] □ -NONE [1] ~ COMMENTS: □ -COAL FINES [-2] □ -COAL FINES [-2] □ -COAL FINES [-2]	Substrate
2) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or check 2 and AVERAGE) 3 UNDERCUT BANKS [1] 2. POOLS > 70 cm [2] 0. OXBOWS, BACKWATERS [1] - EXTENSIVE > 75% [1] 0 OVERHANGING VEGETATION [1] 0. ROOTWADS [1] 3. AQUATIC MACROPHYTES [1] - MODERATE 25 - 75% [7] 2 SHALLOWS (IN SLOW WATER) [1] 3. BOULDERS [1] / LOGS OR WOODY DEBRIS [1] - SPARSE 5 - 25% [3] 0 ROOTMATS [1] - NEARLY ABSENT < 5% [1]	Cover
COMMENTS:	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS / OTHER HIGH [4] EXCELLENT [7] NONE [6] HIGH [3] SNAGGING IMPOUNDMENT MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2] RELOCATION ISLAND LOW [2] FAIR [3] RECOVERING [3] LOW [1] LEVEED NONE [1] POOR [1] RECENT OR NO LEVEED RECOVERY [1] ONE SIDE CHANNEL MODIFICATIONS	Channel
COMMENTS:	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Locking Downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank) VERY WIDE > 100m [5] FOREST, SWAMP [3] CONSERVATION TILLAGE [1] Predominant Per Bank) WIDE > 50m [4] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] Predominant Per Bank, NEW FIELD [1] WIDE > 50m [4] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] Predominant Per Bank, NEW FIELD [1] WIDE > 50m [4] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] Predominant Per Bank, NEW FIELD [1] NODERATE 10 - 50m [3] Predominant, PARK, NEW FIELD [1] OPEN PASTURE, ROWCROP [0] HEAVY / SEVERE [1] NARROW 5 - 10m [2] FENCED PASTURE [1] MINING / CONSTRUCTION [0] HEAVY / SEVERE [1] NONE [0] COMMENTS:	Riparian
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) MAX. DEPTH MORPHOLOGY (Check 1 or 2 & AVERAGE) (Check AI That Apply) - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]	Pool / Current G Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN SUBSTRATE -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - Best Areas > 10cm [1] - MAX < 50 cm [1]	Max 8 Gradient
COMMENTS: 6.) GRADIENT (ft / mi): 12.87 DRAINAGE AREA (sq.mi.): 36.9 GRADIENT (ft / mi): 12.87 DRAINAGE AREA (sq.mi.): *Best areas must be large enough to support a population of itille-obligate species % RIFFLE: % RUN: Best of damage area.	10 Max 10

* 1



Qualitative Habitat Evaluation Index Field Sheet	QHEI Score:	1
River Code: 95-706 RM: 2,41 Stream: Miau Creek		
Site Code: 15-2. Project Code: DRWWIT Location: C Sugar Creek Park		
Date: 8-25-17 Scorer: 145 Latitude: 42,20628 Longitude: -87,96129		
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent		
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE QUALITY		
	(GE)	
-LIMESTONE [1]	S	Substrate
	Γ	~
	L. 1	Max 20
NUMBER OF SUBSTRATE TYPES: 2 -4 or More [2] -LACUSTRINE [0] -NORMAL [0]		
(High Quality Only, Score 5 or >) □ -3 or Less [0] □ -SHALE [-1] □ -NONE [1]		
COMMENTS:		
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONL	Y one or	
(Structure) TYPE: Score All That Occur check 2 and AVERAGE		Cover
UNDERCUT BANKS [1] / POOLS > 70 cm [2] OXBOWS, BACKWATERS [1] -EXTENSIVE > 75% [1]		
OVERHANGING VEGETATION [1] ROOTWADS [1] AQUATIC MACROPHYTES [1] MODERATE 25 - 75%		I Pi
3 SHALLOWS (IN SLOW WATER) [1] 1 BOULDERS [1] 2 LOGS OR WOODY DEBRIS [1] - SPARSE 5 - 25% [3]		Max 20
COMMENTS:		
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)		
SINUOSITY DEVELOPMENT CHANNELIZATION STABILTIY MODIFICATIONS / OTHER		
	UNDMENT C	Channel
-MODERATE [3] GOOD [5] -RECOVERED [4] -MODERATE [2] -RELOCATION -ISLAN		1
-LOW [2] -FAIR [3] -RECOVERING [3] -LOW [1] -CANOPY REMOVAL -LEVER	FD	14
		Max 20
RECOVERY [1]		1100 20
COMMENTS:		
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)		
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	j.	
L R (Most Predominant Per Bank) L R L R (Per Bank)	R	Riparian
-WIDE > 50m [4] -SHRUB OR OLD FIELD [2] -URBAN OR INDUSTRIAL [0] -MODERATE		6
	· · ·	Max 10
		mux 10
□ - VERY NARROW < 5m [1]		
		:
5.) POOL/GLIDE AND RIFFLE / RUN QUALITY		
MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI)		
Interview Interview <t< td=""><td>2</td><td>Paol /</td></t<>	2	Paol /
		Pool /
	(Current
□ -0.7m [4] □ -POOL WIDTH = RIFFLE WIDTH [1] □ -FAST [1] □ -INTERSTITIAL [-1]		0
	L	
□ - 0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -VERY FAST [1]	N	Max 12
□ - < 0.2m [POOL = 0]	0	
COMMENTS:		
CHECK ONE OR CHECK 2 AND ADVERAGE	Rifi	ffle / Run
RIFFLE DEPTH RIFFLE / RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS		5
-*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2]		
□ -Best Areas 5 - 10cm [1] □ - MAX < 50 cm [1] □ -MOD. STABLE (e.g., Large Gravel) [1] □ -LOW [1]	P	Max 8
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0] -NODERATE [0]		
-NO RIFFLE but RUNS present [0] -EXTENSIVE [-1]	G	Gradient
-NO RIFFLE / NO RUN [Metric = 0]	· .	
6.) GRADIENT (ft/mi): 15.13_DRAINAGE AREA (sq.mi.): 35.02 % POOL: 6.) % GLIDE:		10
	core from Table 2 of Users Manual radient and drainage area. N	Max 10
		_

Qualitative Habitat Evaluation	on Index Field Sheet QHEI Score:	\mathcal{V}
River Code: 95-390 RM: 3.66 Stream: ####################################	Matter Seaven Drainage Ditch	
Site Code: 8 5-3 Project Code: DR.W.W. Location: Ust Cire	ec's Plany 0	
Date: 8-24-17 Scorer: May Latitude: 42.24 304	Longitude: - 87,91,579	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent		
	RATE ORIGIN SUBSTRATE QUALITY	
	ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE)	
		strate
	TILLS [1] SILT MODERATE [-1]	λ
	· ·	ax 20
	SANDSTONE [0] EMBEDDED 🛛 -EXTENSIVE [-2] RIP / RAP [0] NESS: 🗹 -MODERATE [-1]	
	SHALE [-1] -NONE [1]	
	COAL FINES [-2]	
COMMENTS:		
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions)	AMOUNT: (Check ONLY one or	
(Structure) TYPE: Score All That Occur		over
UNDERCUT BANKS [1] POOLS > 70 cm [2] OXBOWS, BACKWA	_	14
OVERHANGING VEGETATION [1] / ROOTWADS [1] / AQUATIC MACROP 3 SHALLOWS (IN SLOW WATER) [1] /> BOULDERS [1] / LOGS OR WOODY I		ax 20
	-SFARSE 5 - 23% [5] Max	IX 20
COMMENTS:		
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)		
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY	MODIFICATIONS / OTHER	
-HIGH [4] -EXCELLENT [7] -NONE [6] -HIGH		annel
-MODERATE [3] -GOOD [5] -RECOVERED [4] -MODE		2
Z -LOW [2] Z -FAIR [3] -RECOVERING [3] -LOW [
-NONE [1] -POOR [1] -RECENT OR NO		ax 20
	-ONE SIDE CHANNEL MODIFICATIONS	
COMMENTS:		
	BA PA	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	River Right Looking Downstream	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIA)	BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R		arian
	ERVATION TILLAGE [1] -NONE / LITTLE [3]	
	N OR INDUSTRIAL [0]	
		ex 10
	G / CONSTRUCTION [0]	
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY		
MAX. DEPTH MORPHOLOGY	URRENT VELOCITY (POOLS & RIFFLES!)	
(Check 1 ONLY!) (Check 1 or 2 & AVERAGE)	(Check All That Apply) Poo	ool /
		ment
	AST [1] INTERSTITIAL [-1]	λ
		ax 12
□ - < 0.2m [POOL = 0] □ -1 COMMENTS:	IONE [-1]	
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffie /	/Run
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE	RIFFLE / RUN EMBEDDEDNESS	
-*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulde		1
-Best Areas 5 - 10cm [1] - MAX < 50 cm [1] - MOD. STABLE (e.g., Large Gr		ax 8
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, San		alte = *
-NO RIFFLE but RUNS present [0]	-EXTENSIVE [-1] Grad	dient
-NO RIFFLE / NO RUN [Metric = 0] COMMENTS:		
		0
	Gradient Score from Table 2 of Users Manual	
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE:	% RUN: based on gradient and drainage area. Max	10


.

MO	Mid nest Biodiversitj Institute	2		Qualitative	Habit	at Evaluation Index	Field Sh	neet	QHEI S	core:
River Code: 95	707	RM:		0.01	Stream:	MAULEULEU	Kilde	eer Cr	eek	
Site Code: 15-4		Project		DRWW17	Location		nton	69		
Date: 8-23	17	Scorer:	M	AS.	Latitude:	42,20552	Longitude:	- 87.9-	7471	
1.) SUBSTRATE (Check	ONLY Two	Substrate 1	TYPE BO	DXES; Estimate % pe	rcent .					
TYPE	POOL	RIFFLE			POOL	RIFFLE SUBSTRATE ORIGIN		SUBSTRATE	QUALITY	
-BLDR/SLBS [1			-] -GRAVEL [7]	<u></u> X	Check ONE (OR 2 & AVE	ERAGE)		OR 2 & AVERAGE)	
- Lg BOULD [10]			-7] -SAND [6]	\prec	V UMESTONE [1]	SILT:	🗹 -SILT HE		1
BOULDER [9]	·		-] -BEDROCK [5]		□ -TILLS [1]			DDERATE [-1]	
	\rightarrow		-] -DETRITUS [3]	<u></u>	/ -WETLANDS [0]		SILT NC		l
-HARDPAN [4]	V		-	-ARTIFICIAL [0]		HARDPAN [0]				
-MUCK [2]	<u></u>] -SILT [2]	<u> </u>					
NUMBER OF SUBSTRA				-4 or More [2]			NESS:	-MODER		
(High Quality Only, Scon				-4 or more [2] -3 or Less [0]						
(riigh duainy Only, Soon	1301-1	•	Jes -	-3 of dess [0]		-SHALE [-1] -COAL FINES [-2]		-NONE ['	i]	
COMMENTS:						-00ALTINE3 [-2]			<u></u>	_
2.) INSTREAM COVER	(Give each co	over type a			instructions)				[: (Check ONLY one or	
(Structure)			TYPE:	Score All That Occur	~				and AVERAGE)	r
UNDERCUT BA		111 141	1	_POOLS > 70 cm [2] ROOTWADS [1]		OXBOWS, BACKWATERS [1] AQUATIC MACROPHYTES [1]		<u> </u>	SIVE > 75% [11] ATE 25 - 75% [7]	
3 SHALLOWS (IN			6	BOULDERS [1]		LOGS OR WOODY DEBRIS [1]			ATE 25 - 75% [7] E 5 - 25% [3]	Ĺ
/ ROOTMATS [1]									ABSENT < 5% [1]	
COMMENTS:				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						·
3.) CHANNEL MORPHO				+ +					1	
SINUOSITY		VELOPME		CHANNELIZA		OTABIETT	6.º	IONS / OTHER		
-HIGH [4]		-EXCELLE -GOOD [5		-NONE [-HIGH [3]	, □-SNAG			E E
-LOW [2]		-5000 [5 '-FAIR [3]	1		ERED [4]	-LOW [1]		PY REMOVAL	-ISLAND -LEVEED	
-NONE [1]		-POOR [1]							-BANK SHAPING	Ľ
				RECOVE			□-ONE \$	SIDE CHANNEL	MODIFICATIONS	
COMMENTS:					NDED [-1]	,				
COMMENTS.			-				~ 1		64	
4.) RIPARIAN ZONE AN	D BANK ERC	OSION (ch	eck ONE				River F	Right Looking Dov	wnstream	
RIPARIAN WIDTH						100 Meter RIPARIAN)	· ·	BANK EF	ROSION	
L R (Per Bank)			,	redominant Per Bank	:)	LR			(Per Bank)	Ĺ
-VERY WIDE > 1	+ +			ST, SWAMP [3]		CONSERVATION TILLA			-NONE / LITTLE [3]	
-WIDE > 50m [4] -MODERATE 10				3 or old field [2] Ential, park, new		URBAN OR INDUSTRIA			-MODERATE [2] -HEAVY / SEVERE [1]	L
S -NARROW 5 - 1		v / -		D PASTURE [1]	n iero (i)	MINING / CONSTRUCTI			-HERVI / BEVERE [1]	
-VERY NARROW	/ < 5m [1]									
-NONE [0]		COMME	NTS:							÷
5.) POOL / GLIDE AND			, .							
MAX. DEPTH		1 GOTILIT I		MORPHOLOGY		CURRENT VELOCI	TY (POOLS &	RIFFLES!)		
(Check 1 ONLYI)	17"B" (115			1 or 2 & AVERAGE)		All That Apply)	,		
🗀 - 1m [6]	45 - 8128			WIDTH > RIFFLE WI		-EDDIES [1]	-TORR	ENTIAL [-1]		_
0.7m [4]				WIDTH = RIFFLE WI		-FAST [1]		STITIAL [-1]		Γ
- 0.4 to 0.7m [2]	-			WIDTH < RIFFLE WI	DTH [0]	-MODERATE [1]		MITTENT [-2]		L
- 0.2 to 0.4m [1]	= 03		-IMPOU	NDED [-1]		-SLOW [1]	-VERY	FAST [1]		1
COMMENTS:	-1									
			DEDT			AND ADVERAGE				Ri
RIFFLE DEPTH)om [2]		DEPTH			RUN SUBSTRATE		IN EMBEDDEDN	ESS	
-*Best Areas > 1						e.g., Cobble, Boulder) [2] ABLE (e.g., Large Gravel) [1]			4	L
-Rest Areas 5-1		<u>x</u>	111/1/1	www.mplj L.	,	יחבר (היאיי רמואף הומיהו) [1]		9		
-Best Areas 5 - 1					-UNSTABL	E (Fine Gravel, Sand) (0)	-MODE	RATE [0]		
	n [0]	/			-UNSTABL	E (Fine Gravel, Sand) [0]				6

2

.

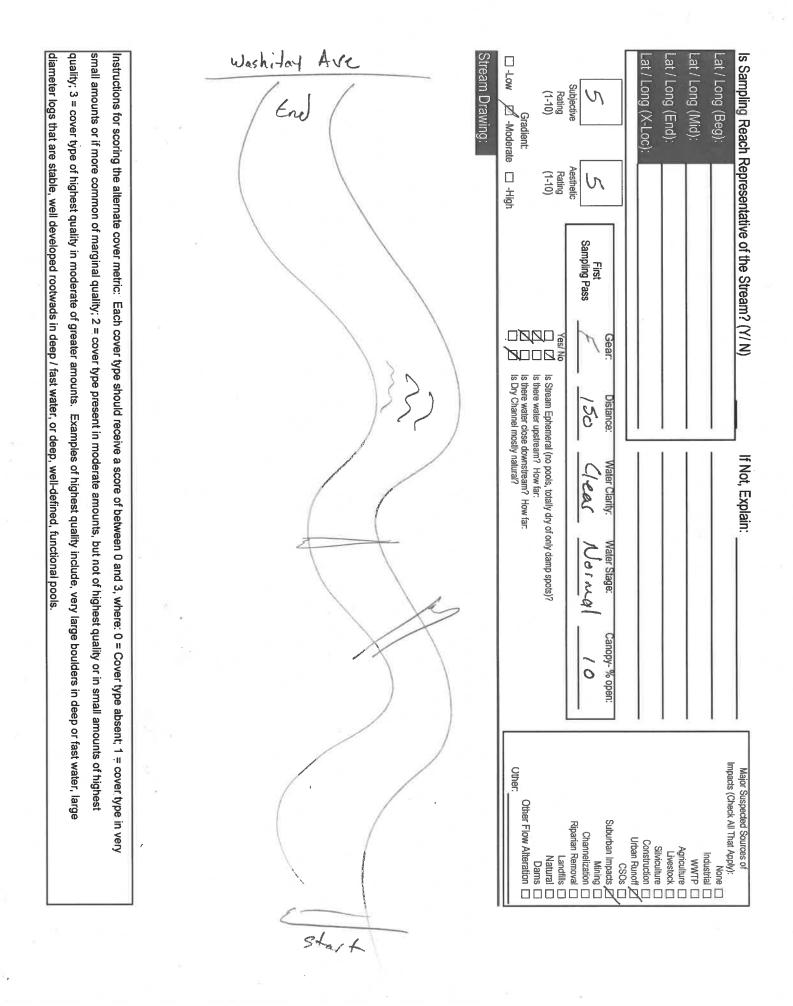
ß

River Code: 95 · 706 Site Code: 15 - 5	RM: <u>5,40</u> Project Code: D 2 W W 17	Stream:	Checker Rd	L	
Date: 0-25-17	Scorer: MAS		21087	Longitude: 87,98594	(
1.) SUBSTRATE (Check ONLY T	vo Substrate TYPE BOXES; Estimate % pe	ercent			
TYPE POOL		POOL RIFFLE	SUBSTRATE ORIGIN	SUBSTRATE QUALITY	
	GRAVEL [7]	<u>X X</u>	Check ONE (OR 2 & AVE		ERAGE)
- Lg BOULD [10]	[6]	<u> </u>		SILT: ZÍ -SILT HEAVY [-2]	
	BEDROCK [5]	<u> </u>	_ [2"-TILLS [1]	SILT MODERATE	[-1]
			WETLANDS [0]		
-HARDPAN [4] -MUCK [2] X	ARTIFICIAL [0]	42	-HARDPAN [0] -SANDSTONE [0]	EMBEDDED -SILT FREE [1]	
		<u>×</u>	RIP / RAP [0]	NESS: -MODERATE [-1]	
NUMBER OF SUBSTRATE TYPE	S: 2 -4 or More [2]			-NORMAL [0]	
(High Quality Only, Score 5 or >)	-3 or Less [0]		□ -SHALE [-1]	-NONE [1]	
			-COAL FINES [-2]		
COMMENTS:	h cover type a score of 0 to 3; see back for i	instructions)		AMOUNT: (Check	ONLY one of
(Structure)	TYPE: Score All That Occur			check 2 and AVER/	
UNDERCUT BANKS [1]	POOLS > 70 cm [2])OXBOWS,	BACKWATERS [1]	-EXTENSIVE > 75%	6 [11]
OVERHANGING VEGETA			MACROPHYTES [1]	-MODERATE 25 - 7	
3 SHALLOWS (IN SLOW W	ATER) [1] [BOULDERS [1]	<u> </u>	WOODY DEBRIS [1]	-SPARSE 5 - 25% [
ROOTMATS [1] COMMENTS:				-NEARLY ABSENT	< 5% [1]
	Check ONLY one PER Category OR check	2 and AVERAGE)			
	DEVELOPMENT CHANNELIZA		ABILTIY	MODIFICATIONS / OTHER	
	-EXCELLENT [7] -NONE [-HIGH [3]		POUNDMENT
/	-GOOD [5] 2 -RECOV		-MODERATE [2]		
	Z''-FAIR [3]		-LOW [1]		ANK SHAPING
		(ÉRY [1]			
	-IMPOU				
COMMENTS:	· · · · · · · · · · · · · · · · · · ·	<u> </u>	# 1, 8	8	
RIPARIAN WIDTH L R (Per Bank)	L R (Most Predominant Per Bank	W_FIELD [1]	<u>RIPARIAN)</u> CONSERVATION TILLAGURBAN OR INDUSTRIALOPEN PASTURE, ROWCMINING / CONSTRUCTIO	. [0]	LITTLE [3] ATE [2]
5.) POOL / GLIDE AND RIFFLE / I MAX, DEPTH	RUN QUALITY MORPHOLOGY		CURRENT VELOCIT	TY (POOLS & RIFFLES!)	
Check 1 ONLY!)	(Check 1 or 2 & AVERAGE	E)		All That Apply)	
- 1m [6]	POOL WIDTH > RIFFLE WI		-EDDIES [1]	-TORRENTIAL [-1]	
- 0.7m [4]	POOL WIDTH = RIFFLE WI		-FAST [1]	-INTERSTITIAL [-1]	
- 0.4 to 0.7m [2] - 0.2 to 0.4m [1]	-POOL WIDTH < RIFFLE WI -IMPOUNDED [-1]	IDTH [0]	-MODERATE [1]	-INTERMITTENT [-2] -VERY FAST [1]	
$\sim < 0.2 \text{ (POOL = 0)}$			-NONE [-1]		
COMMENTS:					
W dir separat yang generat an daram an da Milli Mila basa an kasa da an kasa a		OR CHECK 2 AND ADVE		RIFFLE / RUN EMBEDDEDNESS	
NFFLE DEPTH	RUN DEPTH	RIFFLE / RUN SUBS	TIVALL		
-*Best Areas > 10cm [2]	RUN DEPTH	-STABLE (e.g., Cobbl	le, Boulder) [2]	-NONE [2]	
-*Best Areas > 10cm [2] -Best Areas 5 - 10cm [1]	RUN DEPTH	-STABLE (e.g., Cobbl -MOD. STABLE (e.g.,	le, Boulder) [2] , Large Gravel) [1]	-NONE [2]	
□ -*Best Areas > 10cm [2] □ -Best Areas 5 - 10cm [1] □ -Best Areas < 5cm [0]	RUN DEPTH □ - MAX > 50 cm [2] 2 ¹ - MAX < 50 cm [1]	-STABLE (e.g., Cobbl	le, Boulder) [2] , Large Gravel) [1]	-NONE [2] -LOW [1] -MODERATE [0]	
-*Best Areas > 10cm [2] -Best Areas 5 - 10cm [1] -Best Areas < 5cm [0] -NO RIFFLE but RUNS pre-	RUN DEPTH - MAX > 50 cm [2] . - MAX < 50 cm [1] . - MAX < 50 cm [1] . - MAX < 50 cm [1] .	-STABLE (e.g., Cobbl -MOD. STABLE (e.g.,	le, Boulder) [2] , Large Gravel) [1]	-NONE [2]	
-*Best Areas > 10cm [2] -Best Areas 5 - 10cm [1] -Best Areas < 5cm [0] -NO RIFFLE but RUNS pre -NO RIFFLE / NO RUN [M	RUN DEPTH - MAX > 50 cm [2] . - MAX < 50 cm [1] . - MAX < 50 cm [1] . - MAX < 50 cm [1] .	-STABLE (e.g., Cobbl -MOD. STABLE (e.g.,	le, Boulder) [2] , Large Gravel) [1]	-NONE [2] -LOW [1] -MODERATE [0]	
-Best Areas 5 - 10cm [1] -Best Areas < 5cm [0] -NO RIFFLE but RUNS pre-	RUN DEPTH - MAX > 50 cm [2] - MAX < 50 cm [1]	-STABLE (e.g., Cobbi -MOD. STABLE (e.g., -UNSTABLE (Fine Gr	le, Boulder) [2] Large Gravel) [1] avel, Sand) [0]		
-*Best Areas > 10cm [2] -Best Areas 5 - 10cm [1] -Best Areas 5 - 10cm [1] -Best Areas < 5cm [0] -NO RIFFLE but RUNS pre -NO RIFFLE / NO RUN [M COMMENTS:	RUN DEPTH - MAX > 50 cm [2] - MAX < 50 cm [1]	-STABLE (e.g., Cobbi -MOD. STABLE (e.g., -UNSTABLE (Fine Gr	le, Boulder) [2] Large Gravel) [1] avel, Sand) [0]		ېې. Vient Score from Table 2 of Users. d on gradieni end drainage area.
-*Best Areas > 10cm [2] -Best Areas 5 - 10cm [1] -Best Areas 5 - 10cm [1] -Best Areas < 5cm [0] -NO RIFFLE but RUNS pre -NO RIFFLE / NO RUN [M COMMENTS:	RUN DEPTH - MAX > 50 cm [2] - MAX < 50 cm [1]	-STABLE (e.g., Cobbi -MOD. STABLE (e.g., -UNSTABLE (Fine Gra- -UNSTABLE (Fine Gra- % POOL:	le, Boulder) [2] Large Gravel) [1] avel, Sand) [0]		
-*Best Areas > 10cm [2] -Best Areas > 10cm [1] -Best Areas 5 - 10cm [1] -Best Areas < 5cm [0] -NO RIFFLE but RUNS pre -NO RIFFLE / NO RUN [M COMMENTS:	RUN DEPTH - MAX > 50 cm [2] - MAX < 50 cm [1]	-STABLE (e.g., Cobbi -MOD. STABLE (e.g., -UNSTABLE (Fine Gra- -UNSTABLE (Fine Gra- % POOL:	le, Boulder) [2] Large Gravel) [1] avel, Sand) [0]		ient Score from Table 2 of Users I d on pradient and drainage area.

-

•

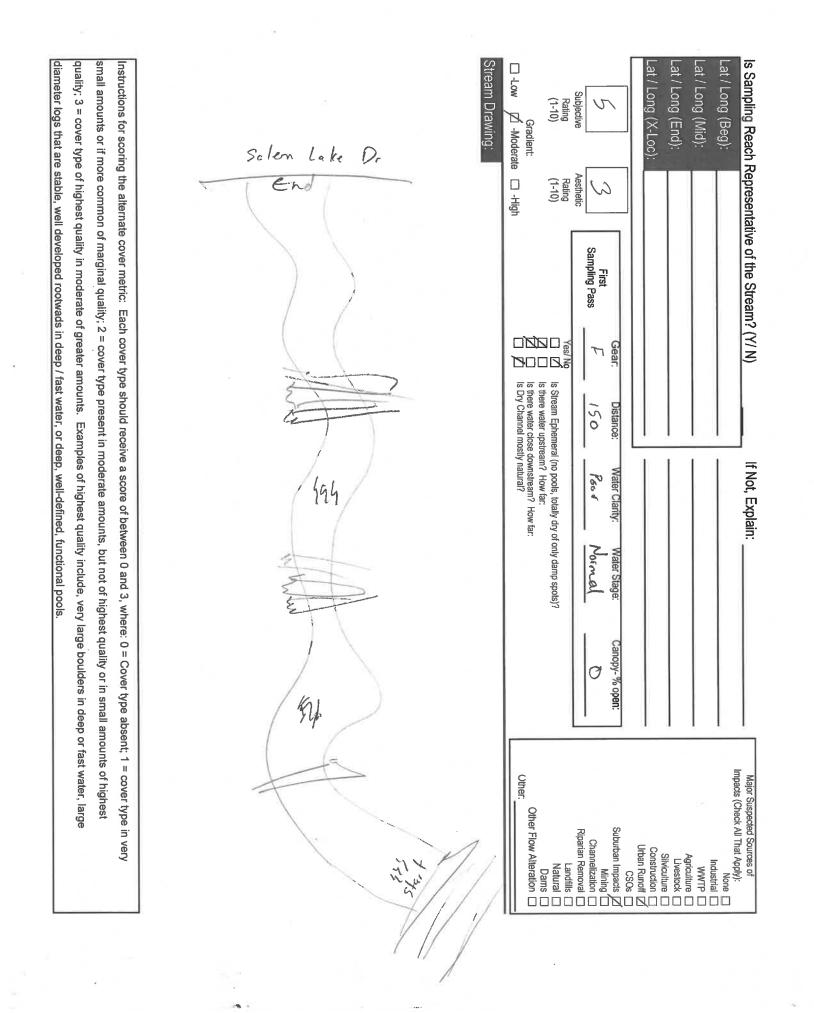
Instructions for scoring the altern small amounts or if more commu quality; 3 = cover type of highes diameter logs that are stable, we	Checker Rd/End	Is Sampling Reach Representative of the Stream? (Y/ N) Lat / Long (Mid): Lat / Long (Mid): Lat / Long (End): Lat / Long (X-Loc): Lat / Long (X-Loc): Gradient: Rating (1-10) Gradient:
Instructions for scoring the alternate cover metric: Each cover type should receive a score of between 0 and 3, where: 0 = Cover type absent; 1 = cover type in very small amounts or if more common of marginal quality; 2 = cover type present in moderate amounts, but not of highest quality or in small amounts of highest quality; 3 = cover type of highest quality in moderate of greater amounts. Examples of highest quality include, very large boulders in deep or fast water, large diameter logs that are stable, well developed rootwads in deep / fast water, or deep, well-defined, functional pools.	Deep pool	iative of the Stream? (Y/N) If Not, Explain: If Not, Explain: If Not, Explain: First Gear: Distance: Water Clarity: Water Stage: Sampling Pass E 150 Post Canopy-% open: Ves/No Is Stream Ephemeral (no pools, totally dry of only damp spots)? Is there water upstream? How far: Is there water dose downstream? How far:
ent; 1 = cover type in very nounts of highest or fast water, large	Mr. tel	Major Suspected Sources of Impacts (Check All That Apply): None Industrial Agriculture Livestock Construction Urban Runoff CSOS Chamelization Riparian Removal Dams Other Flow Alteration


QUALITATIVE Habitat Evaluation Index Field Sheet QHEI Score:	59.7
River Code: 95-706 RM: 9.83 Stream: Indian Creek	
Site Code: 15-6 Project Code: Dewwy 7 Location: Det, Washi tay Hill	-
Date: 8-22-17 Scorer: MAS Latitude: 42.23809 Longitude: -88.02249	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
Check ONE (0R 2 & AVERAGE) Check ONE (0R 2 & AVERAGE) Check ONE (0R 2 & AVERAGE)	
□ □ -Lg BOULD [10]	Cubatrata
	Substrate
	1.01
	1.1
-HARDPAN [4] ARTIFICIAL [0] HARDPAN [0] SILT FREE [1]	Max 20
NUMBER OF SUBSTRATE TYPES: 2 -4 or More [2] -LACUSTRINE [0] -NORMAL [0]	
(High Quality Only, Score 5 or >)	
COAL FINES [-2]	
COMMENTS:	
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
UNDERCUT BANKS [1] O POOLS > 70 cm [2] O OXBOWS, BACKWATERS [1] -EXTENSIVE > 75% [11]	1.01
OVERHANGING VEGETATION [1] ROOTWADS [1] AQUATIC MACROPHYTES [1]	
	Max 20
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	e -
<u>SINUOSITY</u> DEVELOPMENT CHANNELIZATION STABILTIY MODIFICATIONS / OTHER	
□ -HIGH [4] □ -EXCELLENT [7] □ -NONE [6] □ -HIGH [3] □-SNAGGING □ -IMPOUNDMENT	Channel
	Channel
	Max 20
RECOVERY [1]	INICIA ZU
COMMENTS:	
PA BA	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian
	5
Comparing C	Max 10
Image: Second	
COMMENTS:	
5.) POOL/GLIDE AND RIFFLE / RUN QUALITY	
MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!)	
(Check 1 ONLY!) (Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
□ - 1m [6] □ -POOL WIDTH > RIFFLE WIDTH [2] □ -EDDIES [1] □ -TORRENTIAL [-1]	Current
$\Box - 0.7m$ [4] $\Box -POOL WIDTH = RIFFLE WIDTH [1] \Box -FAST [1] \Box -INTERSTITIAL [-1]$	4
□ - 0.4 to 0.7m [2] □ -POOL WIDTH < RIFFLE WIDTH [0] □ -INTERMITTENT [-2] . □ - 0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ ·VERY FAST [1]	
□ - 0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -SLOW [1] □ -VERY FAST [1] □ - < 0.2m [POOL = 0} □ -NONE [-1] •	Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS	
	1.5
A -Best Areas 5 - 10cm [1] - MAX < 50 cm [1] - MOD STABLE (e.g. Large Gravel) [1] - LOW [1]	Max 8
Best Areas < 5cm [0]	
-NO RIFFLE but RUNS present [0]	Gradient
-NO RIFFLE / NO RUN [Metric = 0]	
COMMENTS:	
6.) GRADIENT (ft / mi): 21.94 DRAINAGE AREA (sq.mi.): 3.7 % POOL: 6.) % GLIDE:	0/
Gradient Score from Table 2 of Users Manual	May 10
"Best areas must be large enough to support a population of rifile-obligate species % RIFFLE: % RUN: based on gradient and drainage area.	Max 10

•

Ŧ

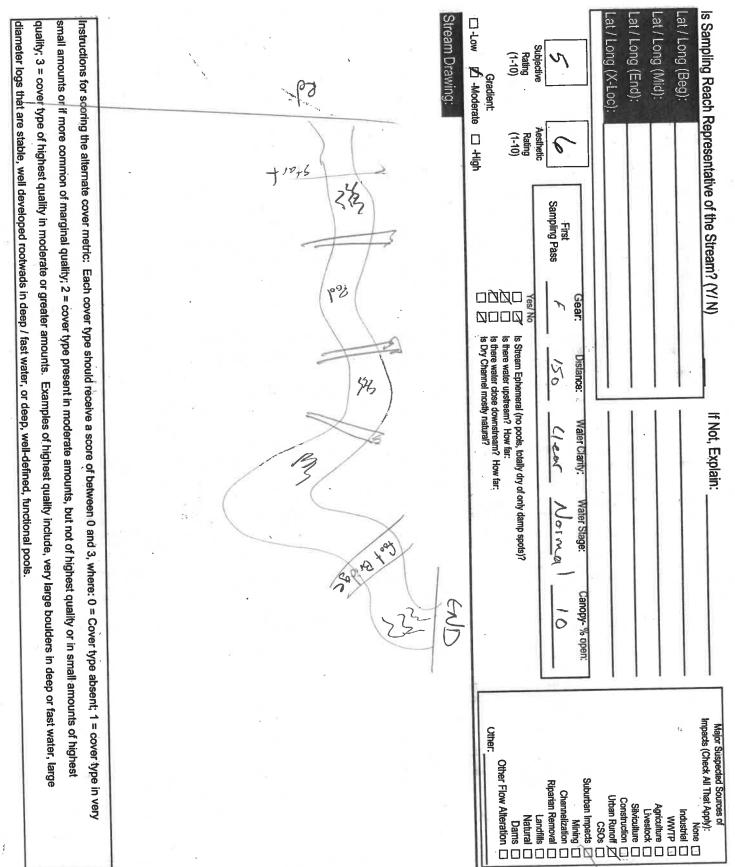
.'I ,


••

Qualitative Habitat Evaluation Index Field Sheet QHEI Score	18.5
River Code: 95-707 RM: 4.6 Stream: Stream: Kildeer Creek	-
Site Code: 15-7 Project Code: ORYWIA Location: Ds. Salen Lat Dr Date: 8-22-17 Scorer: MAS Latitude: 42,1929 Longitude: -88,02913	-
Date: Q = 2.2 - I Scorer: M A Latitude: Y = 1/2 A Longitude: - K = 0 > 2/1 S 1) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE OUALITY Image: Dete: POOL RIFFLE POOL RIFFLE Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE OUALITY Image: Dete: POOL RIFFLE POOL RIFFLE Substrate TORIGIN SUBSTRATE OUALITY Image: Dete: POOL RIFFLE POOL RIFFLE Substrate TORIGIN SUBSTRATE OUALITY Image: Dete: POOL RIFFLE POOL RIFFLE Substrate TORIGIN SUBSTRATE OUALITY Image: Dete: POOL POERTITUS [3] Image: Dete: -Viterstrate Ouality -Sitt Moderate [1] -Sitt Moderate [1] Image: Dete: POOL POERTITUS [3] Image: Dete: -Viterstrate Ouality -Sitt Moderate [1] -Sitt Moderate [1] Image: Dete: POOL Sitt Tickis [0] Image: Pool <t< td=""><td>Substrate Q Max 20 Cover Cover</td></t<>	Substrate Q Max 20 Cover Cover
	Channel Max 20 Max 20
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank) -VERY WIDE > 100m [5] -FOREST, SWAMP [3] -CONSERVATION TILLAGE [1] -NONE / LITTLE [3] -WIDE > 50m [4] -SHRUB OR OLD FIELD [2] -URBAN OR INDUSTRIAL [0] -MODERATE [2] -MODERATE 10 - 50m [3] -RESIDENTIAL, PARK, NEW FIELD [1] -OPEN PASTURE, ROWCROP [0] -HEAVY / SEVERE [1] -VERY NARROW 5 - 10m [2] -FENCED PASTURE [1] -MINING / CONSTRUCTION [0] -VERY NARROW 5 5m [1] -FENCED PASTURE [1] -MINING / CONSTRUCTION [0]	Riparian <u>5</u> Max 10
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLY]) (Check 1 or 2 & AVERAGE) (Check All That Apply) - 1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1] - 0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1] - 0.4 to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0]	Pool / Current H Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE RIFFLE DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] -Best Areas > 10cm [1] - MAX > 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] - LOW [1] -Best Areas < 5cm [0]	Riffle / Run Max 8 Gradient
6.) GRADIENT (ft / mi): 40.83 DRAINAGE AREA (sq.mi.): 2.86 % POOL: % GLIDE: Gredient Scene from Table 2 of Users Manual *Best areas must be large enough to support a population of rifile-obligate species % RIFFLE: % RUN: Best of gredient and drainage area.	Max 10

y. *.

į

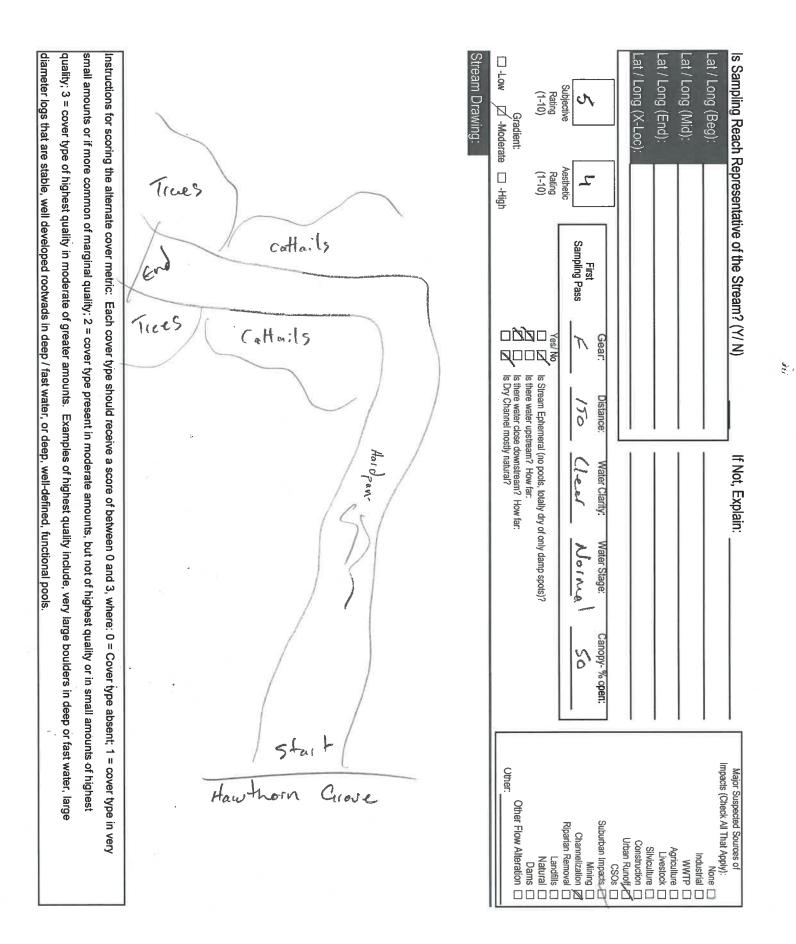


Midwest Qualitative Habitat Evaluation Index Field Sheet QHEI Score	: 55
River Code: 95-390 RM: 0.45 Stream: Scary Drainage Ditch	
Site Code: 15-8 Project Code: DRWW17 Location: Ds Vernon Hills Golf Course	-
Date: <u>8-23-14</u> Scorer: <u>MA</u> Latitude: <u>42.21452</u> Longitude: <u>-87.96537</u>	-
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE)	
🗆 🗆 -Lg BOULD [10] 💭 🗀 -SAND [6] 🔽 🔽 🖂 -LIMESTONE [1] SILT: 📈 -SILT HEAVY [-2]	Substrate
	10.5
🗆 🗆 -COBBLE [8] / 🔲 🗆 -DETRITUS [3] 🗽 🖉 -WETLANDS [0] 🖂 -SILT NORMAL [0]	10.
□ □ -HARDPAN [4] □ □ -ARTIFICIAL [0] □ -HARDPAN [0] □ -SILT FREE [1]	Max 20
🗆 🗆 -MUCK [2] 🛛 🗶 🔹 🗆 -SILT [2] 💦 💭 -SANDSTONE [0] EMBEDDED 🗹 -EXTENSIVE [-2]	
NUMBER OF SUBSTRATE TYPES: 4 or More [2] -LACUSTRINE [0] -NORMAL [0]	
(High Quality Only, Score 5 or >) 🖉 -3 or Less [0]	
-COAL FINES [-2]	
COMMENTS:	-
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
	14
OVERHANGING VEGETATION [1]ROOTWADS [1]AQUATIC MACROPHYTES [1]MODERATE 25 - 75% [7] 	
	Max 20
COMMENTS:	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS / OTHER	
	Channel
-MODERATE [3] -GOOD [5] -RECOVERED [4] Z-MODERATE [2] Z-RELOCATION -ISLAND	a
	<i>i</i>
POOR [1] -POOR [1] -RECENT OR NO -DREDGING -BANK SHAPING	Max 20
RECOVERY [1] ONE SIDE CHANNEL MODIFICATIONS	
-IMPOUNDED [-1]	
COMMENTS:	-
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian
	. 5
	5.
- MODERATE 10 - 50m [3] Z RESIDENTIAL, PARK, NEW FIELD [1] DOPEN PASTURE, ROWCROP [0] DOPEN PASTURE, ROWCROP [0]	Max 10
C - MINING / CONSTRUCTION [0]	
-VERY NARROW < 5m [1]	
COMMENTS:	<u> </u>
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!)	
(Check 1 ONLY!) (Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
- 1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -eDDIEs [1] -TORRENTIAL [-1] -0.7m [4] D -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1]	Current
□ - 0.7m [4]	15
□ -0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -VERY FAST [1]	Max 12
□ -<0.2m (POOL = 0)	, men re
COMMENTS:	
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS	
□*Best Areas > 10cm [2] □ MAX > 50 cm [2] □STABLE (e.g., Cobble, Boulder) [2] □NONE [2]	
☐ -Best Areas 5 - 10cm [1]	Max 8
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0] COSTENSIVE (A)	0
	Gradient
-NO RIFFLE / NO RUN [Metric = 0] COMMENTS:	
A manual	0
Gradient Score from Table 2 of Lisers Manual	
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN: besed on gradient and drainage area.	Max 10

553 Stream Drawing: Is Sampling Reach Representative of the Stream? (Y/ N) quality; 3 = cover type of highest quality in moderate of greater amounts. Examples of highest quality include, very large boulders in deep or fast water, large small amounts or if more common of marginal quality; 2 = cover type present in moderate amounts, but not of highest quality or in small amounts of highest -Low diameter logs that are stable, well developed rootwads in deep / fast water, or deep, well-defined, functional pools. Instructions for scoring the alternate cover metric: Each cover type should receive a score of between 0 and 3, where: 0 = Cover type absent; 1 = cover type in very Lat / Long (Mid): Lat / Long (Beg): _at / Long (End): .at / Long (X-Loc) Subjectiv Rating (1-10) U G -Moderate Gradient: 🗆 -High Rating (1-10) Aesthetic 5 513 First Sampling Pass Gear 3 Is there water close downstream? How far: Is Dry Channel mostly natural? Is Stream Ephemeral (no pools, totally dry of only damp spots) Is there water upstream? How far: Sc Distance If Not, Explain: Bridge Foot Chear Vater Clarity: - Generator Norma Water Stage anopy- % open: 40 135 Impacts (Check All That Apply): Other: Major Suspected Sources of None Industrial WWTP Agriculture Livestock Sluburban Runoff CSOS Suburban Impacts Suburban Impacts Channelization Riparian Removal Landfills Natural Dams Dams rouise 5341 Golf Course / Gred

0102/82/9

0/ _	
Riffs / Run Rank Back Gradlent	CHECK ONE OR CHECK 2 MUN ENDRERAGE RIFLE / RUN SUBSTRATE RIFLE / RUN SUBSTRATE CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN SUBSTRATE CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN SUBSTRATE CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN EMBEDDEDNESS CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN EMBEDDEDNESS CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN EMBEDDEDNESS CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN EMBEDDEDNESS CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN EMBEDDEDNESS CHECK ONE OR CHECK 2 MUN SUBSTRATE RIFLE / RUN SUBSTRATE RIFLE / RUN EMBEDEDNESS CHECK 0 RUN RUNS PRESENT RUN RUNS PRESENT RIFLE / RUN RUNS PRESENT RIFLE / RUN RUNS PRESENT CHECK 0 RUN RUNS PRESENT CHECK 0 RUN RUNS PRESENT CHECK 0 RUN RUNS PRESENT RUN RUNS PRESENT RUN RUNS PRESENT RUN RUNS CHECK 0 RUN RUNS PR
Pool / Next 12	5.) POOL/GLIDE AND RIFFLE/RUN QUALITY MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI) (Check 1 or 2 & AVERAGE) (Check 1 or 2 & AVERAGE) (Check 1 or 2 & AVERAGE) [] - 47 m [6] - POOL WIDTH = RIFFLE WIDTH [7] - TORRENT VELOCITY (POOLS & RIFFLESI) [] - 6,7m [4] - POOL WIDTH = RIFFLE WIDTH [7] - TORRENT VELOCITY (POOLS & RIFFLESI) [] - 6,7m [4] - POOL WIDTH = RIFFLE WIDTH [7] - TORRENT VELOCITY (POOLS & RIFFLESI) [] - 6,7m [6] - POOL WIDTH = RIFFLE WIDTH [7] - TORRENT VELOCITY (POOLS & RIFFLESI) [] - 6,7m [6] - POOL WIDTH = RIFFLE WIDTH [7] - TORRERT VELOCITY (POOLS & RIFFLESI) [] - 0,7m [6] - POOL WIDTH = RIFFLE WIDTH [7] - TORRERT VELOCITY (POOLS & RIFFLESI) [] - 0,7m [6] - POOL WIDTH = RIFFLE WIDTH [7] - TORRERT VELOCITY (POOLS & RIFFLESI) [] - 0,7m [6] - POOL WIDTH = RIFFLE WIDTH [7] - TORRERT VELOCITY (POOLS & RIFFLESI) [] - 0,7m [7] - 0.2 RIFFLE WIDTH [7] - TORRERT VELOCITY (POOLS & RIFFLESI) [] - 0.2 RIFFLE RUDTH [7] - AREART VELOCITY (POOLS & RIFFLESI) - AREART VELOCITY (POOLS & RIFFLESI) [] - 0.2 RIFFLE RUDTH [7] - AREART VELOCITY (POOLS & RIFFLESI) - AREART VELOCITY (POOLS & RIFFLESI) [] - 0.2 RIFFLE RUDTH [7] - AREART VELOCITY (RIFFLESI)
nsheqiA ÇJ 01 xsM	4.) RIPRRIAN ZONE AND BANK EROSION (check ONE box PER Bank) River Right Looking Downeteam 4.) RIPRRIAN ZONE AND BANK EROSION (check ONE box PER Bank) L R (Per Bank) 2. L R (Per Bank) L R (Per Bank) 2. L R (Per Bank) L R (Per Bank) 2. WODERATE 10 - 50m [5] SHRUB ON CD FIELD [7] 2. WODERATE 10 - 50m [5] SHRUB ON CLD FIELD [7] 2. WARROW 5 - 10m [2] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [5] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 2. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 3. WODERATE 10 - 50m [7] SHRUB ON CLD FIELD [7] 3. WODER
Channel Channel	3.) CHANNEL MORPHOLOGY: Creack ONLY one PER Category OR check 2 and AVERAGE) 3.) CHANNEL MORPHOLOGY: Creack ONLY one PER Category OR check 2 and AVERAGE) 3.) CHANNEL MORPHOLOGY: Creack ONLY one PER Category OR check 2 and AVERAGE) 3.) CHANNEL MORPHOLOGY: Creack ONLY one PER Category OR check 2 and AVERAGE) 3.) CHANNEL MORPHOLOGY: Creack ONLY one PER Category OR check 2 and AVERAGE) Comments: Creacy or the state of the state o
COVER COVER	2.) INSTREEM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one of Check ONLY one
	COMMENTS: -4 or More [2] NUMBER OF SUBSTRATE TYPES: -4 or More [2] -COAL -COAL FINES [-3] NUMBER OF SUBSTRATE TYPES: -4 or More [2] -COAL -COAL FINES [-3] -COAL -COAL FINES [-3] -COAL -COAL -COAL <
Substrate 0/ 0xeM	I.) SUBSTRATE (Creck ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE OUALITY C.OBBLE [8] C.OBBLE [8] C.OBBLE [9] C.OBBLE [9
score: 15	Code: 25-70 Code: RM: 10.83 Stream: M. I. I. Construct Qualitative Habitat Evaluation Index Field Sheet QHEIS She Code: 15-9 Project Code: 10.83 Location: U. A. M. I. A. M. A. M. I. A. M. I. A. M. I. A. M. A. M. I. A. M. A. M. I. A. M. A. M

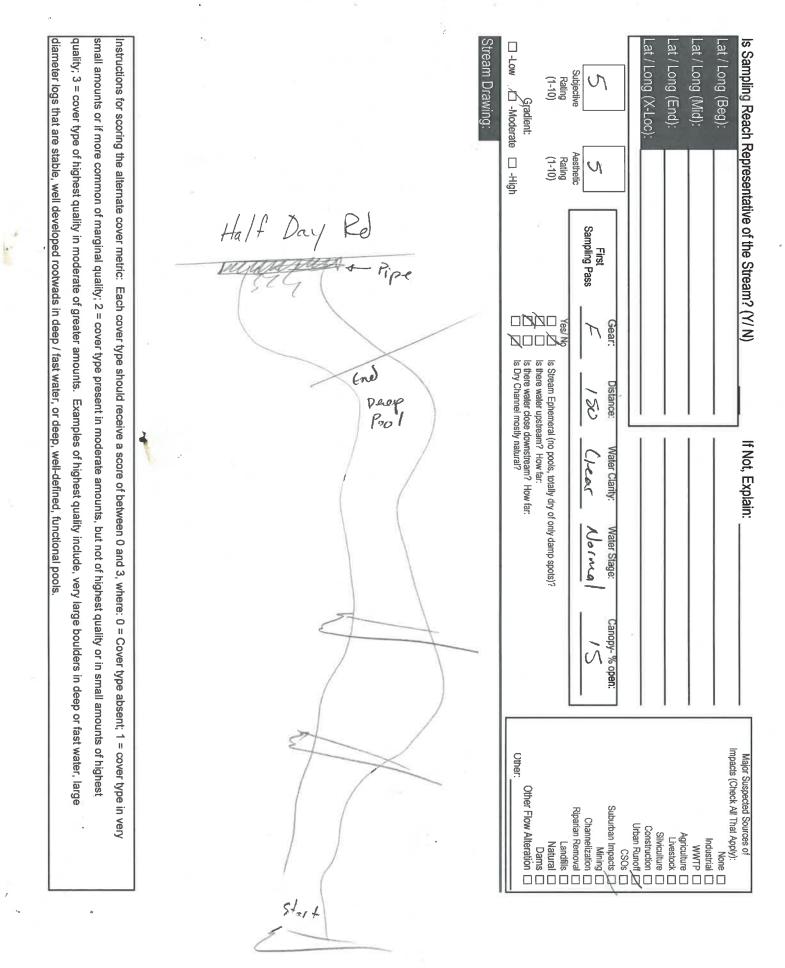


MA Set 254 P Midwess		- 		6
Biodiversity Institute	Qualitative Hab	itat Evaluation Index I	Field Sheet Q⊦	IEI Score:
River Code: 95-717	RM: 0.20 Stream		see, c	
Site Code: <u>15-16</u> Date: 8-22-17	Project Code: DRWWIF Location	on: <u>Vs+ N Cilmer Rd</u> le: 42,23023	Longitude: - 18.03773	<u> </u>
	Substrate TYPE BOXES; Estimate % percent			1
TYPE POOL	RIFFLE POOL	RIFFLE SUBSTRATE ORIGIN	SUBSTRATE QUALITY	
	🗆 🗹 - GRAVEL [7] 🛛 🔜	Check ONE (OR 2 & AVE		
-Lg BOULD [10]	🗹 🗆 -SAND [6] 🛛 🔍		SILT: SILT HEAVY [-2]	Substrate
BOULDER [9]	C -BEDROCK [5]	Ź -TILLS [1]	SILT MODERATE [-1]	<i>k</i> ,
		WETLANDS [0]	SILT NORMAL [0]	M
-HARDPAN [4]	[] [] -ARTIFICIAL [0]	HARDPAN [0]	SILT FREE [1]	Max 20
			EMBEDDED - EXTENSIVE [-2] NESS: - MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES:	2 -4 or More [2]			
(High Quality Only, Score 5 or >)	-3 or Less [0]			
		COAL FINES [-2]		
COMMENTS:				
2.) INSTREAM COVER (Give each co (Structure)	wer type a score of 0 to 3; see back for instruction TYPE: Score All That Occur	s)	<u>AMOUNT</u> : (Check ONLY one or check 2 and AVERAGE)	Course
UNDERCUT BANKS [1]	() POOLS > 70 cm [2] (OXBOWS, BACKWATERS [1]	-EXTENSIVE > 75% [11]	Cover
2 OVERHANGING VEGETATIC	N [1] ROOTWADS [1]	AQUATIC MACROPHYTES [1]	-MODERATE 25 - 75% [7]	14
3 SHALLOWS (IN SLOW WATE	ER) [1]BOULDERS [1]3	LOGS OR WOODY DEBRIS [1]	-SPARSE 5 - 25% [3]	Max 20
ROOTMATS [1]			-NEARLY ABSENT < 5% [1]	
COMMENTS:	ck ONLY one PER Category OR check 2 and AV	-RAGE)		
	VELOPMENT CHANNELIZATION	STABILTIY	MODIFICATIONS / OTHER	
	-EXCELLENT [7] -NONE [6]	-HIGH [3]		Channel
	-GOOD [5] -RECOVERED [4]		RELOCATION -ISLAND	3
	-FAIR [3] -RECOVERING [3 -POOR [1] -RECENT OR NO] 🗌 -LOW [1]	CANOPY REMOVAL -LEVEED DREDGING BANK SHAPING	
	RECOVERY [1]		-ONE SIDE CHANNEL MODIFICATIONS	IVIDA 20
	-IMPOUNDED [-1]			
COMMENTS:				i
	SION (check ONE box PER bank or check 2 and		River Right Looking Downstream	
RIPARIAN WIDTH	FLOOD PLAIN QUALITY (PA		BANK EROSION	
L R (Per Bank)	L R (Most Predominant Per Bank)	LR	L R (Per Bank)	Riparian
-VERY WIDE > 100m [5]	-FOREST, SWAMP [3]	CONSERVATION TILLAC		6
	- SHRUB OR OLD FIELD [2]			5
	-RESIDENTIAL, PARK, NEW FIELD [1	OPEN PASTURE, ROWC OPEN PASTURE, ROWC ONSTRUCTIC		Max 10
□ □ -VERY NARROW < 5m [1]			54 [0]	
-NONE [0]	COMMENTS:			
5.) POOL / GLIDE AND RIFFLE / RUN MAX. DEPTH	MORPHOLOGY		Y (POOLS & RIFFLESI)	
(Check 1 ONLY!)	(Check 1 or 2 & AVERAGE)		II That Apply)	Pool /
🗀 - 1m [6]	POOL WIDTH > RIFFLE WIDTH [2]	-EDDIES [1]	-TORRENTIAL [-1]	Current
— - 0.7m [4]	-POOL WIDTH = RIFFLE WIDTH [1]	🗌 -FAST [1]	-INTERSTITIAL [-1]	4
- 0.4 to 0.7m [2]	-POOL WIDTH < RIFFLE WIDTH [0]	-MODERATE [1]		
- 0.2 to 0.4m [1]	-IMPOUNDED [-1]	-SLOW [1]	-VERY FAST [1]	Max 12
COMMENTS:				
				**
	CHECK ONE OR CHECK			Riffle / Run
RIFFLE DEPTH -*Best Areas > 10cm [2]		E / RUN SUBSTRATE E (e.g., Cobble, Boulder) [2]	RIFFLE / RUN EMBEDDEDNESS	0.5
Best Areas 5 - 10cm [1]			-LOW [1]	Max 8
-Best Areas < 5cm [0]		STABLE (e.g., Large Gravel) [1] IBLE (Fine Gravel, Sand) [0]	-MODERATE [0]	
-NO RIFFLE but RUNS preser			-EXTENSIVE [-1]	Gradient
-NO RIFFLE / NO RUN [Metric COMMENTS:	= UJ		-	
6.) GRADIENT (ft / mi): 34.19	DRAINAGE AREA (sq.mi.): 2.22	% POOL: % GLIDE		
Best areas must be large enough to support a		% RIFFLE: % RUN	Gradient Score from Table	2 of Users Manual
www.acae must ne wide enough to subboll a	population of thire-oungette species		N: based on gradient and dra	inege area. Max 10

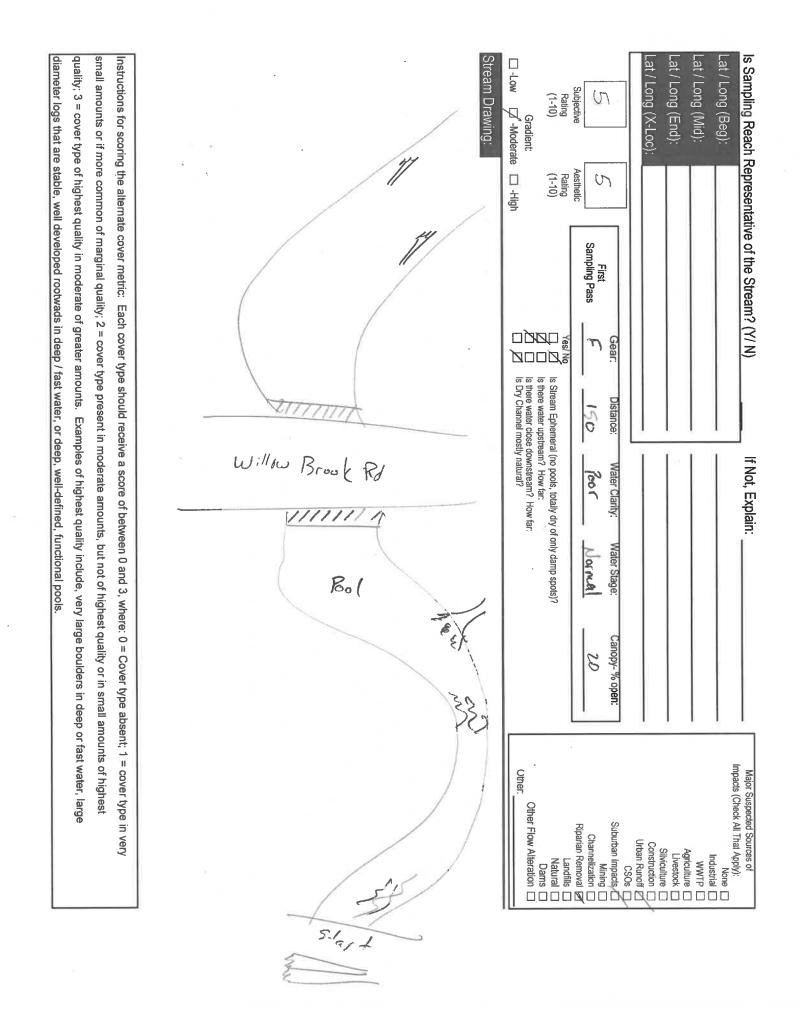
-

Rev Code: 157-705 Ref 2,3 Server 167-62 Lack Dirk Lack Dirk Lack Dirk Lack Dirk 167-62 Lack Dirk	Qualitative Habitat Evalua	tion Index Field Sheet QHEI Score:
Date 2:17-12 Record Afrific Latenace '2:2 (1 (2) Longitive <		
LSUBSTRUE (CHAO ONLY THE SOBLEMENT PYRE CORE Science % prevent SUBSTRUE COMMING SUBSTRUE COMMING DESCRIPTIONE (D) GOAL OFFICE GOAL OFFICE SUBSTRUE COMMING DESCRIPTIONE (D) GOAL OFFICE GOAL OFFICE SUBSTRUE COMMING DESCRIPTIONE (D) GOAL OFFICE SUBSTRUE COMMING SUBSTRUE COMMING DEVELOPMENT GOAL OFFICE SUBSTRUE COMMING SUBSTRUE COMMING SUBSTRUE COMMING DEVELOPMENT GOAL OFFICE SUBSTRUE COMMING SUBSTRU		
Construction Construction <td< td=""><td></td><td></td></td<>		
Image: Security is a security security security security security security security		
Image: Set in contrast, in the image: Set		
COMMENT: Comment: Status ()		
Image: Set in the set of the set		
Implementation Imple		
NUMBER OF SUBSTRATE TYPE: -4 or two (2)		
(High Caulty Only, Sove 5 or >) 3 or Less [0]		
COMMENTS:		
21.1MEERAN COVER (6) even control to 3: see back for instructions) Audio: (1) Cover Audio: (1) Cover		
Sinucliani TVPE: Score AIT The Court OutSOMDS: BACKWATERS (1) Index 2 and AVERAGE) Cover		AMOUNT: (Check ONLY one or
	(Structure) TYPE: Score All That Occur	
SHLUNK (M SLOW WATER) (1) BOULDERS (1) LOS OR WOODY DEBRIS (1) SPARES 5: 29% (5) Max 22 COMMENTS: -NEARLY ASSENT < 6% (1)		
3.1 CHANNEL MODER/CLOQC: (Check OW, Your PER Gatagory OR deak: 2 and AVERAGE) SINUSEITY MODER/CLICINT, I CHANNEL ZATION STABLITY MODER/CLICINT, I Channel Channel <thchannel< th=""> Channel Channel</thchannel<>		
SHUGSTY EXECUTENT Channel ZATION STABILTY MODERATE [2]		
Image Indian (I) Image Indian (I) <td< td=""><td></td><td></td></td<>		
¹ - MODERATE [3] ¹ - GOOD [6] ¹ - RECOVERED [4] ¹ - RECOVERING [3] ¹ - LOW [2] ¹ - RECOVERING [3] ¹ - LOW [2] ¹ - RECOVERING [3] ¹ - LOW [1] ¹ - RECOVERING [3] ¹ - RECOVERING [H [3] -SNAGGING -IMPOUNDMENT Channel
NONE [1] POOR [1] PEECENT OR NO DREDGING BANK SKARING Max 20 NONE [1] ONE SIDE CHANNEL MODIFICATIONS ONE SIDE CHANNEL MODIFICATIONS ONE SIDE CHANNEL MODIFICATIONS	-MODERATE [3] -GOOD [5] -RECOVERED [4] -MO	DERATE [2] Z-RELOCATION I -ISLAND
PECOVERY [1]		
□-IMPOLINGED[-1] COMMENTS: 4.1. BIFARIAN ZONE AND BANK EROSION (check ONE tox PER bank or check 2 and AVERAGE per bank)		
4.). RIVER RAND ZONE AND BANK ERCISION (check ONE box PER bank or check 2 and AVERAGE per bank)	-IMPOUNDED [-1]	
EIPZARIAN WIDTH ELCOD PLAIN QUALITY (PAST 100 Mediar RIPARIAN) BANK EROSION L R (Most Predominent Per Bank) L R L R (Fer Bank) L R (Fer Bank) Riparian	COMMENTS:	
Image: Regent in the	4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream
¹ - VERY WIDE > 100m [5] ¹ - FOREST. SWAMP [3] ¹ - CONSERVATION TILLAGE [1] ¹ - NONE / LITTLE [3] ¹ - NODERATE [2] ¹ - MODERATE [2] ¹ - NONE for (1) ¹ - FERICED PASTURE, NEW FIELD [1] ¹ - OPEN PASTURE, ROWCROP [0] ¹ - HEAVY / SEVERE [1] ¹ - HEAVY / SEVERE [1] ¹ - MAXROW 5-10m [2] ¹ - FERICED PASTURE [1] ¹ - MORPHOLOGY ¹ - MORPHOLOGY ¹ - MORPHOLOGY ¹ - CURRENT VELOCITY (POOLS & RIFFLESI) ¹ (Check AI That Apply) ¹ - OOL WIDTH > RIFFLE WIDTH [2] ¹ - EDDIES [1] ¹ - TORRENTIAL [-1] ¹ - OOL WIDTH = RIFFLE WIDTH [2] ¹ - EDDIES [1] ¹ - TORRENTIAL [-1] ¹ - OOL WIDTH = RIFFLE WIDTH [2] ¹ - EDDIES [1] ¹ - TORRENTIAL [-1] ¹ - OOL WIDTH = RIFFLE WIDTH [1] ¹ - AST [1] ¹ - MORERATE [1] ¹ - MORE [2] ¹ - MAX > 50 cm [2] ¹ - MORE [2] ¹ - MAX > 50 cm [2] ¹ - MAX > 50 cm [2] ¹ - MAX > 50 cm [2] ¹ - MORE [And the second sec	
¹ -WIDE > 50m [4] ¹ - SHRUB OR OLD FIELD [2] ¹ - WADDERATE [0] ¹ - MADDERATE [2] ¹ - MAX DEPTH ¹ - MORPHOLOGY ¹ - MORPHOLOGY ¹ - MORPHOLOGY ¹ - MODERATE [2] ¹ - MODERATE [2] ¹ - MODERATE [2] ¹ - MADDERATE [2] ¹ - MADDERATE [2] ¹ - MAX DEPTH ¹ - MORPHOLOGY ¹ - MODERATE [2] ¹ - MODERATE [1] ¹ - TORRENTIAL [-1] ¹ - MODE [-1] ¹ - MODERATE [1] ¹ - MODERATE [2]		
□ -MUDERAIE 10 - 50m [3] □ -RESIDENTIAL, PARK, NEW FIELD [1] □ -OPEN PASTURE, ROWCROP [0] □ -HEAVY / SEVERE [1] □ -MARKOW 5 - 10m [2] □ -FENCED PASTURE [1] □ -MINING / CONSTRUCTION [0] □ -HEAVY / SEVERE [1] Max 10 □ -WORK 5 - 10m [2] □ -FENCED PASTURE [1] □ -MINING / CONSTRUCTION [0] □ -HEAVY / SEVERE [1] Max 10 □ -WORK 5 - 10m [2] □ -FENCED PASTURE [1] □ -MINING / CONSTRUCTION [0] □ -HEAVY / SEVERE [1] Max 10 MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) Check All That Apply) Pool / (Check All That Apply) (Check All That Apply) Pool with the RIFFLE WIDTH [2] □ -EDDIES [1] □ -INTERSTITIAL [-1] Current □ -0.4 to 0.7m [2] □ -POOL WIDTH = RIFFLE WIDTH [1] □ -FAST [1] □ -INTERSTITIAL [-1] ↓ □ -0.4 to 0.7m [2] □ -POOL WIDTH = RIFFLE WIDTH [0] □ -FAST [1] □ -INTERSTITIAL [-1] ↓ □ -0.4 to 0.7m [2] □ -POOL WIDTH = RIFFLE WIDTH [0] □ -FAST [1] □ -INTERSTITIAL [-1] ↓ □ -0.4 to 0.7m [2] □ -POOL WIDTH = RIFFLE WIDTH [0] □ -FAST [1] □ -INTERSTITIAL [-1] ↓ □ -0.4 to 0.7m [2] □ -POOL WIDTH = RIFFLE WIDTH [1] □ -FAST [1]	/ · · · · · · · · · · · · · · · · · · ·	3AN OR INDUSTRIAL [0]
□ -VERY NARROW < 5m [1]		EN PASTURE, ROWCROP [0] -HEAVY / SEVERE [1] Max 10
 -HONE [0] COMMENTS: 5.1 POOL / GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MAX.DEPTH MORPHOLOGY (Check 10 r) 2 & AVERAGE) (Check 10 r) 2 & AVERAGE) (Check AI That Apply) (Check AI That Apply) (Check 10 r) 2 & AVERAGE) (Check AI That Apply) -1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1] -0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -HOTERNTITAL [-1] -0.4 to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0] -MODERATE [1] -HOTERNTITAL [-1] -O.2 to 0.4m [1] -POOL WIDTH < RIFFLE WIDTH [0] -MODERATE [1] -HOTERNTITAL [-1] -O.2 to 0.4m [1] -POOL WIDTH < RIFFLE WIDTH [0] -MONE [-1] -O.2 to 0.4m [1] -O.2 to 0.4m [1] -HOPOULDED [-1] -SLOW [1] -NONE [-1] Max 12 -O.2 to 0.4m [1] -MODE OR CHECK 2A NDADVERAGE RIFFLE DEPTH		ING / CONSTRUCTION [0]
5.) POOL/GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES/) (Check 1 or 12 & AVERAGE) (Check All That Apply) Pool / Current Pool / (1 on 10) (Check 1 or 12 & AVERAGE) (Check All That Apply) Pool / Current 0.7m [4] POOL WIDTH > RIFFLE WIDTH [2] -0.7m [4] POOL WIDTH + RIFFLE WIDTH [0] -0.7m [4] POOL WIDTH + RIFFLE WIDTH [0] -0.2 to 0.4m [1] POOL WIDTH + RIFFLE WIDTH [0] -0.2 to 0.4m [1] -HOPOUNDED [-1] -0.2 to 0.4m [1] -MAX > 50 cm [2] -0.2 to 0.4m [1] -MAX > 50 cm [2] -0.4 to 0.7m [2] -MAX > 50 cm [2] -Best Areas > 10cm [2] -MAX > 50 cm [2] -Best Areas > 10cm [2] -MAX < 50 cm [1]		
MAX_DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool / - 1m [6] POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1] Current - 0.7m [4] POOL WIDTH > RIFFLE WIDTH [0] -HAST [1] -INTERSTITIAL [-1] Image: Current [-2] Image		
ICheck 1 ONLY[] (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool / Image: Pool Wilder State Stat		
□ - 0.7m [4] □ -POOL WIDTH = RIFFLE WIDTH [1] □ -FAST [1] □ -INTERSTITIAL [-1] □ - 0.4 to 0.7m [2] □ -POOL WIDTH < RIFFLE WIDTH [0]		
□ - 0.4 to 0.7m [2] □ -POOL WIDTH < RIFFLE WIDTH [0]	· · · · · · · · · · · · · · · · · · ·	
¹ - 0.2 to 0.4m [1] ¹ -IMPOUNDED [-1] ¹ -IMPOUNDED [-1] ¹ -SLOW [1] ¹ -VERY FAST [1] ¹ -NONE [-1] ¹ -VERY FAST [1] ¹ -NONE [-1] ¹ -NOE [-1] ¹ -NOE [-1] ¹ -		
- < 0.2m (POOL = 0)		
CHECK ONE OR CHECK 2 AND ADVERAGE Riffle / Run RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS Image: Colspan="2">Gradient Colspan="2">Gradient Colspan="2">Colspan="2">Colspan="2">Colspan="2 Pagest Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - NONE [2] - Max 8 Image: Colspan="2">- Best Areas > 10cm [1] Image: Colspan="2">Colspan="2"Colspan="		
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS 6 -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - NONE [2] - Max 8 - Best Areas > 10cm [1] - MAX < 50 cm [1]	COMMENTS:	
-*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - NONE [2] -*Best Areas > 10cm [1] - MAX > 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] - LOW [1] Max 8 - Best Areas < 5cm [0]	CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
Best Areas 5 - 10cm [1] - MAX < 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] - LOW [1] - LOW [1] - Best Areas < 5cm [0] - NO RIFFLE but RUNS present [0] - NO RIFFLE / NO RUN [Metric = 0] COMMENTS: 6.) GRADIENT (fi / mi): 38.51 DRAINAGE AREA (sq.mi.): 1.7 % POOL: % GLIDE: % GLID		
-NO RIFFLE but RUNS present [0] -EXTENSIVE [-1] Gradient -NO RIFFLE / NO RUN [Metric = 0] COMMENTS:	· · · · · · · · · · · · · · · · · · ·	
COMMENTS: 6.) GRADIENT (ft / mi): 38.51 DRAINAGE AREA (sq.mi.): 1.7 % POOL: % GLIDE:		
6.) GRADIENT (ft / mi): 38.51 DRAINAGE AREA (sq.mi.): 1.7 % POOL: % GLIDE: Gradient Score from Table 2 of Users Manual		[*]
Gradieni Score from Table 2 of Users Menuel		% GLIDE: \$
		Gradiant Score from Table 2 of Users Menuel

-

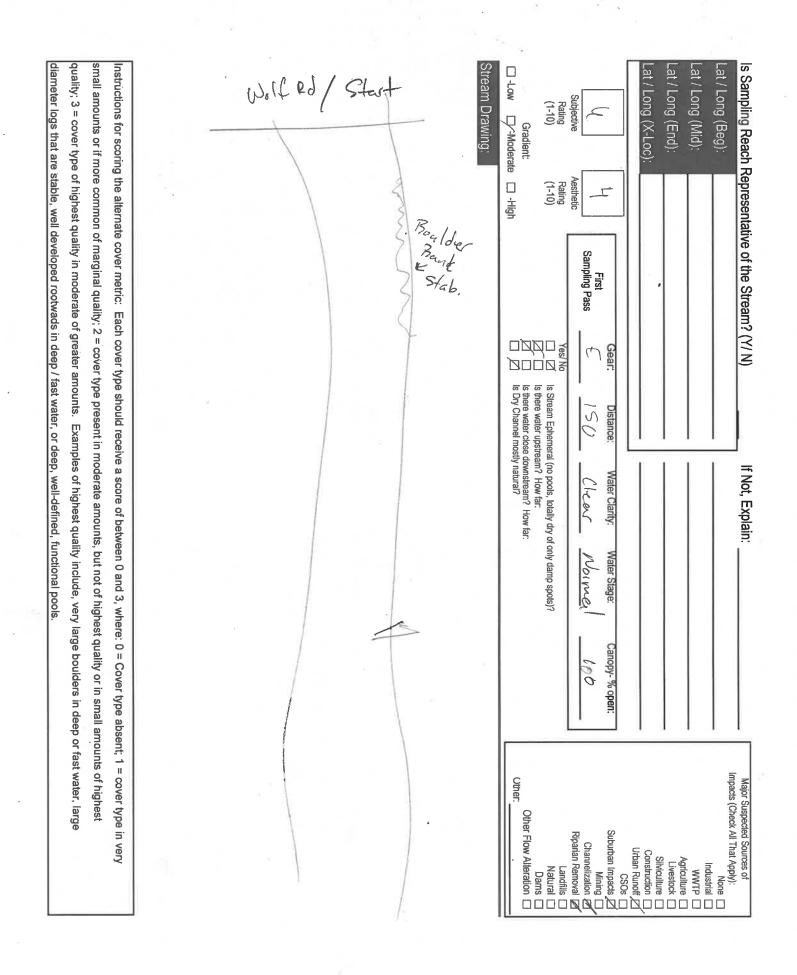

QHEI Score: QHEI Score:	41.5
River Code: 95-707 RM: 5.2 Stream: Kidees Cicele	
Site Code: 15-12 Project Code: DRWW17 Location: Det Half Day Co.	21 21
Date: 8-24-17 Scorer: MAS Latitude: 42, 19623 Longitude: -88,039 6	41 23
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
-BLDR/SLBS [10] GRAVEL [7] K > Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE)	
🗆 🗆 - LIMESTONE [1] SILT: 🖉 - SILT HEAVY [-2]	Substrate
BOULDER [9] D-BEDROCK [5]	
	A
-HARDPAN [4]	Max 20
□ 2 -MUCK [2] □ □ -SILT [2] □ -SANDSTONE [0] EMBEDDED 2 -EXTENSIVE [-2]	•
NUMBER OF SUBSTRATE TYPES: -4 or More [2] -LACUSTRINE [0] -NORMAL [0]	
(High Quality Only, Score 5 or >) Z -3 or Less [0] -SHALE [-1] -NONE [1]	
COMMENTS:	
2) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	15
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
UNDERCUT BANKS [1]POOLS > 70 cm [2]OXBOWS, BACKWATERS [1]EXTENSIVE > 75% [11]	
OVERHANGING VEGETATION [1]ROOTWADS [1]AQUATIC MACROPHYTES [1] Z -MODERATE 25 - 75% [7]	
SHALLOWS (IN SLOW WATER) [1]BOULDERS [1]LOGS OR WOODY DEBRIS [1] /SPARSE 5 - 25% [3]	Max 20
ROOTMATS [1]NEARLY ABSENT < 5% [1]	
COMMENTS:	85
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILTLY MODIFICATIONS / OTHER	
□ -HIGH [4] □ -EXCELLENT [7] □ -NONE [6] □ -HIGH [3] □-SNAGGING □ -IMPOUNDMENT	Channel
-MODERATE [3] -GOOD [5] -RECOVERED [4] -MODERATE [2] -RELOCATION -ISLAND	
	11
-NONE [1] -POOR [1] -RECENT OR NO -DREDGING -BANK SHAPING	Max 20
RECOVERY [1]	
COMMENTS:	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian
	.6
	4.5
MODERATE 10 - 50m [3] RESIDENTIAL, PARK, NEW FIELD [1] OPEN PASTURE, ROWCROP [0] HEAVY / SEVERE [1]	Max 10
Construction [0]	1
[∠] □-VERY NARROW < 5m [1]	
*NONE [0] COMMENTS:	
5.) POOL/GLIDE AND RIFFLE / RUN QUALITY	
MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI)	
(Check 1 ONLY!) (Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
	Current
$\square -0.7m$ [4] $\square -POOL WIDTH = RIFFLE WIDTH (1) \square -FAST [1] \square -INTERSTITIAL [-1]$	
✓ □ -0.4 to 0.7m [2] □ -POOL WIDTH < RIFFLE WIDTH [0]	
□ - 0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -SLOW [1] □ -VERY FAST [1] □ - < 0.2m [POOL = 0} □ -NONE [-1]	Max 12
COMMENTS:	
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS	
□ -*Best Areas > 10cm [2] □ - MAX > 50 cm [2] □ - STABLE (e.g., Cobble, Boulder) [2] □ -NONE [2]	U
□ -Best Areas 5 - 10cm [1] 🖉 - MAX < 50 cm [1] □ -MOD. STABLE (e.g., Large Gravel) [1] □ -LOW [1]	Max 8
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0]	
-NO RIFFLE but RUNS present [0]	Gradient
-NO RIFFLE / NO RUN [Metric = 0]	
COMMENTS:	$ \Lambda $
6.) GRADIENT (ft / mi): 43.04 DRAINAGE AREA (sq.mi.): 2.08 % POOL: % GLIDE:	H
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN: based on gradient and drainage area.	Max 10

.


÷

¥.,

4



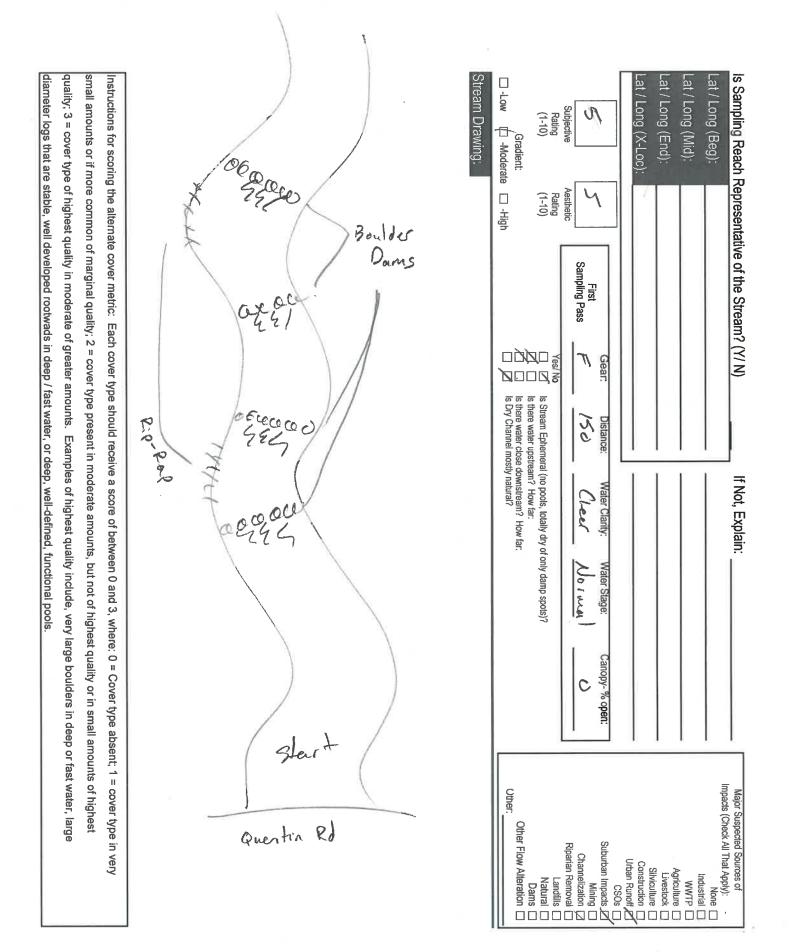
QUALITATIVE Habitat Evaluation Index Field Sheet QHEI Score:	61
River Code: 95-707 RM: 2.21 Stream: Kildeer areek	
Site Code: 15-13 Project Code: DRWWI7 Location: Willow Brook Rd	
Date: 8-24-17 Scorer: MAS Latitude: 47.19359 Longitude: -88.000.20	5
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
BLDR/SLBS [10] Creck ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE)	
-La BOULD [10] -Limestone [1] SILT: -SILT HEAVY [-2]	Substrate
	10
□ □ -HARDPAN [4] □ □ -ARTIFICIAL [0] □ -HARDPAN [0]SILT FREE [1]	Max 20
NUMBER OF SUBSTRATE TYPES: -4 or More [2] -4 clacustrine [0] -IACUSTRINE [0]	
(High Quality Only, Score 5 or >) 🛛 -3 or Less [0] - SHALE [-1] - NONE [1]	
□ -COAL FINES [-2]	
COMMENTS:	
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
/ UNDERCUT BANKS [1] / POOLS > 70 cm [2] O OXBOWS, BACKWATERS [1] -EXTENSIVE > 75% [11]	
O_OVERHANGING VEGETATION [1] / ROOTWADS [1] AQUATIC MACROPHYTES [1]	141
3 SHALLOWS (IN SLOW WATER) [1] 0 BOULDERS [1] 2 LOGS OR WOODY DEBRIS [1] 5 - SPARSE 5 - 25% [3]	Max 20
	INICK LU
COMMENTS:	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS/OTHER	
	Channel
MODERATE [3] GOOD [5] RECOVERED [4] HODERATE [2] RELOCATION I-ISLAND I-ISLAND	3
□ -LOW [2] □ -FAIR [3] □ -RECOVERING [3] □ -LOW [1] □ -CANOPY REMOVAL □ -LEVEED	· ·
□ -NONE [1] □ -POOR [1] □ -RECENT OR NO □-DREDGING □ -BANK SHAPING	Max 20
RECOVERY [1] -ONE SIDE CHANNEL MODIFICATIONS	
COMMENTS:	
Ed Ed	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian
Z -WIDE > 50m [4] □ -SHRUB OR OLD FIELD [2] □ -URBAN OR INDUSTRIAL [0] Z -MODERATE [2]	8
-HEAVY / SEVERE [1]	Max 10
	141605 1.0
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI)	
(Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
□ -1m [6] □ -POOL WIDTH > RIFFLE WIDTH [2] □ -EDDIES [1] □ -TORRENTIAL [-1]	Current
□0.7m [4]	1.0
🖉 - 0.4 to 0.7m [2] 🛛 -POOL WIDTH < RIFFLE WIDTH [0] 🖉 -MODERATE [1] 🖓 -INTERMITTENT [-2]	V
(□ - 0.2 to 0.4m [1] □ -IMPOUNDED [-1] (2] -SLOW [1] □ -VERY FAST [1]	Max 12
□ - < 0.2m [POOL = 0} □ -NONE [-1]	
COMMENTS:	
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
RIFFLE DEPTH RUN DEPTH	
-*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] -NONE [2]	2
Cost Areas 5 - 10cm [1] AX < 50 cm [1] Of MAX < 50 cm	Max 8
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0]	WICA O
- NO RIFFLE but RUNS present [0] - NO RIFFLE but RUNS present [0] - NO RIFFLE but RUNS present [0]	Condiant
_ /	Gradient
□ -NO RIFFLE / NO RUN [Metric ≈ 0]	1
COMMENTS:	8
6.) GRADIENT (ft / mi): 31.36 DRAINAGE AREA (sq.mi.): 5.01 % POOL: % GLIDE:	σ
Content Server Association Table Content and Association	
*Best areas must be large enough to support a population of riffie-obligate species % RIFFLE: % RUN: Besed or gradient and danage era.	Max 10

Biodiversity Institute		bitat Evaluation Index F	Field Sheet QHEI Sco	ore: 44
River Code: 95-703 RM:		eam: Refalo (ree c		
		ation: US+ No. F. R. Itude: 42.12674	Longitude: - 87,90836	_
1.) SUBSTRATE (Check ONLY Two Substrate		(12. [12. [-
TYPE POOL RIFFL		DL RIFFLE SUBSTRATE ORIGIN	SUBSTRATE QUALITY	
		Check ONE (OR 2 & AVE		
□ □ -Lg BOULD [10]			SILT: C -SILT HEAVY [-2]	Subs
			-SILT MODERATE [-1]	
			-SILT NORMAL [0]	N
				Мах
NUMBER OF SUBSTRATE TYPES:			NESS: December 2017 -MODERATE [-1]	
(High Quality Only, Score 5 or >)	-3 or Less [0]	-SHALE [-1]	-NONE [1]	
(righ dealty only, coole of - y				
COMMENTS:				
2.) INSTREAM COVER (Give each cover type (Structure)	a score of 0 to 3; see back for instruc TYPE: Score All That Occur	tions)	AMOUNT: (Check ONLY one or check 2 and AVERAGE)	Cov
UNDERCUT BANKS [1]	POOLS > 70 cm [2]	O OXBOWS, BACKWATERS [1]	-EXTENSIVE > 75% [11]	
OVERHANGING VEGETATION [1]	ROOTWADS [1]	AQUATIC MACROPHYTES [1]		
SHALLOWS (IN SLOW WATER) [1]	BOULDERS [1]	LOGS OR WOODY DEBRIS [1]	-SPARSE 5 - 25% [3]	Max
COMMENTS:			-NEARLY ABSENT < 5% [1]	
3.) CHANNEL MORPHOLOGY: (Check ONL)	Y one PER Category OR check 2 and	AVERAGE)		
SINUOSITY DEVELOPM	CHANNELIZATION	STABILTIY	MODIFICATIONS / OTHER	
-HIGH [4] -EXCEL		-HIGH [3]		Cha
-MODERATE [3] -GOOD -LOW [2] -FAIR [3]			□ -ISLAND □-CANOPY REMOVAL □ -LEVEED	
POOR			DREDGING BANK SHAPING	Max
/ /	RECOVERY [1	-	-ONE SIDE CHANNEL MODIFICATIONS	
COMMENTS:		[-1]		
			M M	
4.) RIPARIAN ZONE AND BANK EROSION (River Right Looking Downstream	
RIPARIAN WIDTH		<u>PAST 100 Meter RIPARIAN)</u> L R	BANK EROSION L R (Per Bank)	Diec
L R (Per Bank) L R	(Most Predominant Per Bank)] -FOREST, SWAMP [3]			Ripa
	-SHRUB OR OLD FIELD [2]	-URBAN OR INDUSTRIAL		4
	-RESIDENTIAL, PARK, NEW FIEL			Max
	-FENCED PASTURE [1]		[0] NC	
	IENTS:			
	12 M			
5.) POOL / GLIDE AND RIFFLE / RUN QUAL MAX. DEPTH	MORPHOLOGY		Y (POOLS & RIFFLES!)	
(Check 1 ONLY!)	(Check 1 or 2 & AVERAGE)		VII That Apply)	Poo
🗀 - 1m [6]	-POOL WIDTH > RIFFLE WIDTH		-TORRENTIAL [-1]	Cun
- 0.7m [4]				2
- 0.4 to 0.7m [2]] -POOL WIDTH < RIFFLE WIDTH [(] -IMPOUNDED [-1]	D]	-INTERMITTENT [-2] -VERY FAST [1]	Max
-< 0.2m [POOL = 0]		-NONE [-1]	· · · · · · · · · · · · · · · · · · ·	
COMMENTS:				
	CHECK ONE OR CH	ECK 2 AND ADVERAGE		Riffle
RIFFLE DEPTH · RI		FLE / RUN SUBSTRATE	RIFFLE / RUN EMBEDDEDNESS	
-*Best Areas > 10cm [2]	- MAX > 50 cm [2] , · 🖂 - ST/	ABLE (e.g., Cobble, Boulder) [2]	-NONE [2]	0
		D. STABLE (e.g., Large Gravel) [1]		Ma
	. I -UN	STABLE (Fine Gravel, Sand) [0]	-MODERATE [0]	
 Best Areas < 5cm [0] NO RIFFLE but RUNS present [0] 	the second		-EXTENSIVE [-1]	Grad

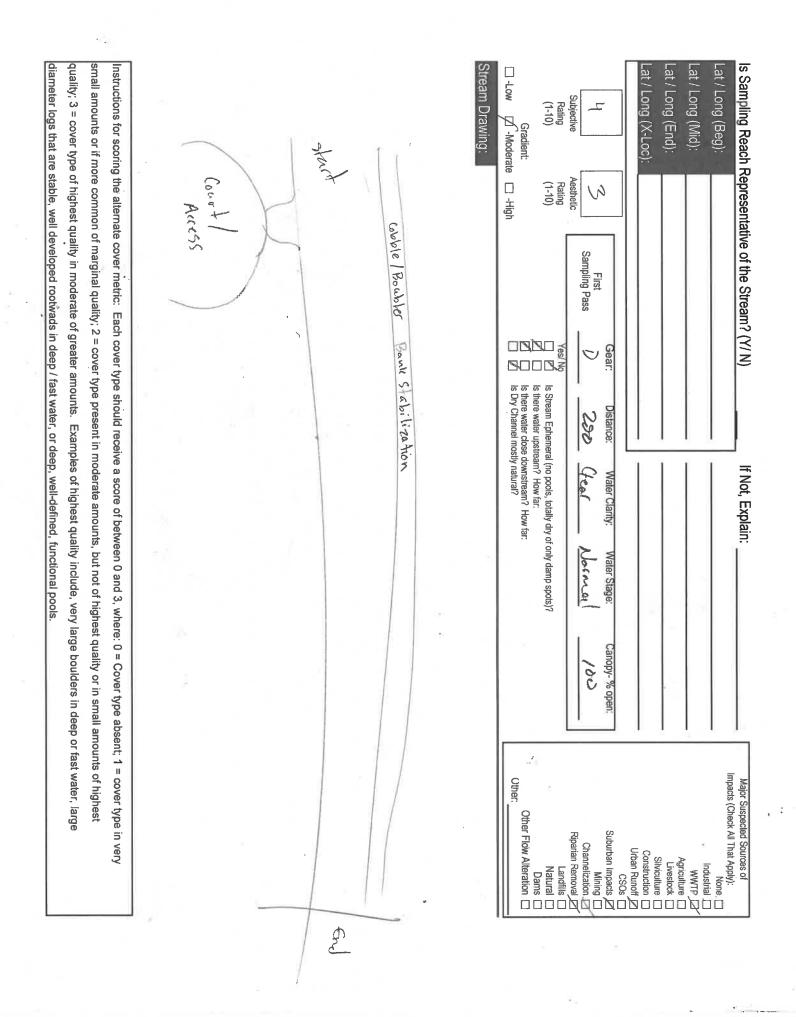
And west	4.25
Stock Qualitative Habitat Evaluation Index Field Sheet QHEI Score: River Code: 95-70.3 RM: (a+) Stream:	6
River Code: 95-703 RM: 6.1 Stream: A Sufface Creek Site Code: 17-2 Project Code: DRUW (F Location: 15+ W Lake Cook R)	2
Date: 8-23-17 Scorer: MAS Latitude: 42.15218 Longitude: -87.96941	1 1
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY Image: Delta Pool POOL POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY Image: Delta Pool POOL POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY Image: Delta Pool POOL POOL POOL RIFFLE POOL Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE)	
Control Contro Control Control Control Control Control Control Control Control Co	Substrate
	14
	Max 20
□ □ -MUCK [2] □ □ -SILT [2] □ -SANDSTONE [0] EMBEDDED. □ -EXTENSIVE [-2] □ -RIP / RAP [0] NESS: ☑ -MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES: 4 or More [2] -LACUSTRINE [0] -NORMAL [0]	
(High Quality Only, Score 5 or >)	
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) (Structure) TYPE: Score All That Occur Check 2 and AVERAGE)	Cover
3 UNDERCUT BANKS [1] / POOLS > 70 cm [2] O OXBOWS, BACKWATERS [1] □ -EXTENSIVE > 75% [11]	1
OVERHANGING VEGETATION [1] ROOTWADS [1] AQUATIC MACROPHYTES [1] MODERATE 25 - 75% [7] SHALLOWS (IN SLOW WATER) [1] BOULDERS [1] LOGS OR WOODY DEBRIS [1] SPARSE 5 - 25% [3]	Max 20
/ ROOTMATS [1]	
COMMENTS:	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILTY MODIFICATIONS / OTHER	
□ -HIGH [4] □ -EXCELLENT [7] □ -NONE [6] □ -HIGH [3] □ -SNAGGING □ -IMPOUNDMENT □ -MODERATE [3] □ -GOOD [5] □ -RECOVERED [4] □ -MODERATE [2] □ -RELOCATION □ -ISLAND	Channel
🖉 -LOW [2] 👘 -FAIR [3] 🖉 -RECOVERING [3] 👘 -LOW [1] 👘 -CANOPY REMOVAL 🔲 -LEVEED	12
-NONE [1] -POOR [1] -RECENT OR NODREDGINGBANK SHAPING RECOVERY [1] -ONE SIDE CHANNEL MODIFICATIONS	Max 20
-IMPOUNDED [-1]	
COMMENTS:	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream	
L R (Per Bank) L R (Most Predominant Per Bank) L R (L R (Per Bank)	Riparian
CONSERVATION TILLAGE [1] OPHICLE [3] OPHICLE - SOME [4] OPHICLE - SOME [4]	4.25
	Max 10
□ □ -NARROW 5 - 10m [2]	
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
MAX DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLYU) (Check 1 or 2'& AVERAGE) (Check All That Apply)	Pool /
(Check 1 ONLYD) (Check 1 or 2'& AVERAGE) (Check All That Apply) □ -1m [6] POOL WIDTH > RIFFLE WIDTH [2] □ -EDDIES [1] □ -TORRENTIAL [-1]	Current
	1
□ - 0.4 to 0.7 m [2] □ -POOL WIDTH < RIFFLE WIDTH [0] □ -INTERMITTENT [-2] □ - 0.2 to 0.4 m [1] □ -IMPOUNDED [-1] □ -VERY FAST [1]	Max 12
□ -< 0.2m [POOL = 0) □ -NONE [-1]	
COMMENTS:	
CHECK ONE OR CHECK 2 AND ADVERAGE RIFFLE DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS	Riffle / Run
□ -*Best-Areas >10cm [2] □ - MAX > 50 cm [2] □ -STABLE (e.g., Cobble, Boulder) [2] □ -NONE [2]	0
-Best Areas 5 - 10cm [1] -MAX < 50 cm [1] -MOD. STABLE (e.g., Large Gravel) [1] -LOW [1] -Best Areas < 5cm [0] -MAX < 50 cm [1] -MOD. STABLE (Fine Gravel, Sand) [0] -MODERATE [0]	Max 8
-best Areas < schi [0] -bit STABLE (Fine Gravel, Sano) [0] -MODERATE [0] -NO RIFFLE but RUNS present [0] - -	Gradient
6.) GRADIENT (1/m): DRAINAGE AREA (sq.mi.): 22./ % POOL: % GLIDE:	0/
*Best areas must be large en up in a population of riffle-obligate species % RIFFLE: % RUN: Based on gradient and drainage area.	Max 10
NY .	

Ę

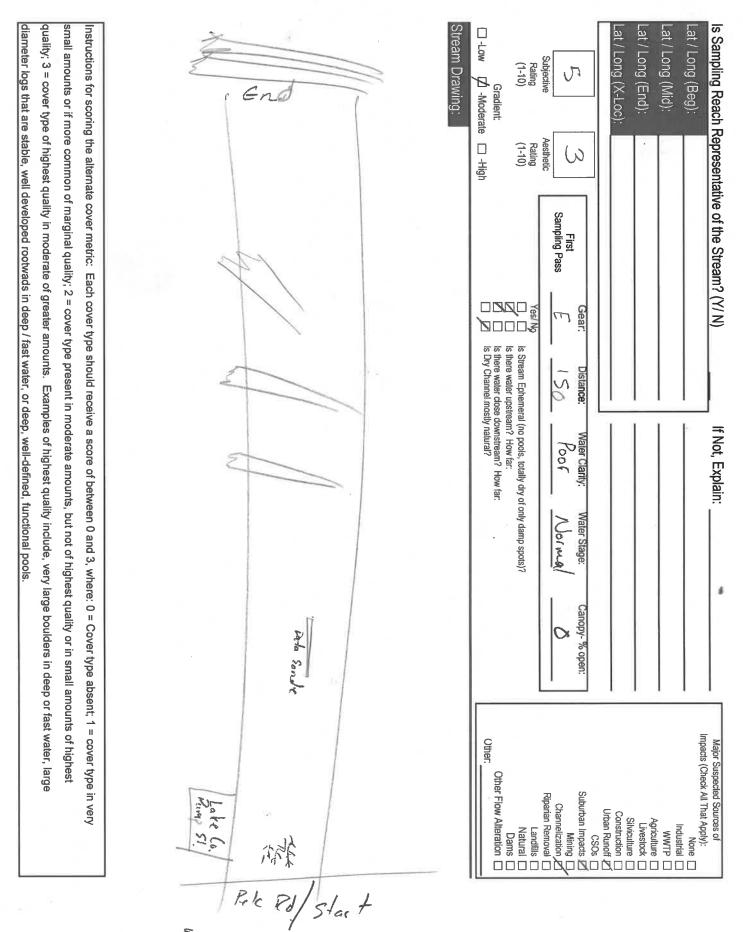
Instructions for scoring th small amounts or if more quality; 3 = cover type of		Lat / Long (Beg): Lat / Long (Mid): Lat / Long (End): Lat / Long (X-Loc): Lat / Long (X-Loc): Subjective Rating (1-10) Gradient: Gradient: Stream Drawing:
Instructions for scoring the alternate cover metric: Each cover type should receive a score of between 0 and 3, where: 0 = Cover type absent; 1 = cover type small amounts or if more common of marginal quality; 2 = cover type present in moderate amounts, but not of highest quality or in small amounts of highest quality in moderate of greater amounts. Examples of highest quality include, very large boulders in deep or fast water, large	Golf Course	Image: Sampling Pass Gear: Distance: Water Clarity: Water Stage: Canopy-% open: Prist E /5'> C.Le.Ar More only damp spots)? (1-10) Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Is there water does downstream? How far: Image: High Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Is there water does downstream? How far: Image: High Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Is there water does downstream? How far: Image: Stream Ephemeral (no posity natural?) Image: Stream Ephemeral (no posity natural)? Image: Stream Ephemeral (no posity natural)?
and 3, where: 0 = Cover type absent; 1 = cover type in very not of highest quality or in small amounts of highest clude, very large boulders in deep or fast water, large	(385) Starit Foot Bridge	Impacts (Check All That Apply): Industrial □ WWTP □ Agriculture □ Livestock □ Silviculture □ Livestock □ Construction □ Urban Runoff ⊉ CSOS □ Urban Runoff ⊉ CSOS □ Urban Runoff ⊉ Channelization ⊉ Riparian Removal ⊉ Landfills □ Dams □ Dams □ Dams □ Dams □


ą

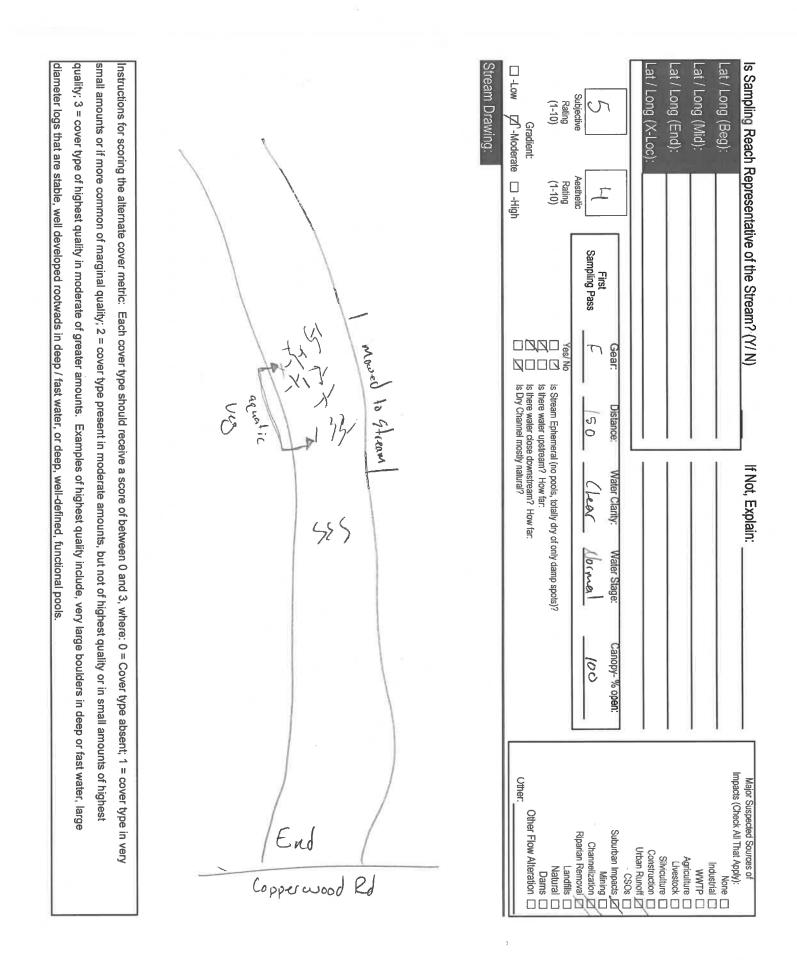
Midwest Qualitative Habitat Evaluation Index Field Sheet QHEI Score:	51.5
River Code: 95-713 Site Code: 17-4 Date: 8-23-17 Score: MAS Latitude: 42.15328 Longitude: -87.99460	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY □ -BLDR/SLBS [10] □ -GRAVEL [7] ✓ Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE) □ -Lg BOULD [10] □ -SAND [6] ✓ □ -LIMESTONE [1] SILT -SILT HEAVY [-2] □ -BOULDER [9] ✓ □ -BEDROCK [5] ✓ □ -VETLANDS [0] □ -SILT MODERATE [-1] □ -COBBLE [8] ✓ □ -DETRITUS [3] ✓ □ -WETLANDS [0] □ -SILT FREE [1] □ -HARDPAN [4] ✓ □ -ARTIFICIAL [0] □ -HARDPAN [0] □ -SILT FREE [1] □ -MUCK [2] ✓ □ -SILT [2] ✓ □ -ARIP / RAP [0] NESS: □ -MODERATE [-1] NUMBER OF SUBSTRATE TYPES: □ -4 or More [2] □ -LACUSTRINE [0] □ -NORMAL [0] □ -NORMAL [0] □ -NORMAL [0] (High Quality Only, Score 5 or >) □ -3 or Less [0] □ -SHALE [-1] □ -NONE [1] □ -NONE [1] □ -COAL FINES [-2]	Substrate
2) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or check 2 and AVERAGE)	Cover
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE) SINUOSITY DEVELOPMENT CHANNELIZATION STABILTY MODIFICATIONS / OTHER HIGH [4] EXCELLENT [7] -NONE [6] -HIGH [3] -SNAGGING -IMPOUNDMENT MODERATE [3] -GOOD [5] RECOVERED [4] -MODERATE [2] RELOCATION -ISLAND LOW [2] FAIR [3] RECOVERING [3] LOW [1] CANOPY REMOVAL -LEVEED NONE [1] -POOR [1] RECOVERING [3] LOW [1] CANOPY REMOVAL -LEVEED NONE [1] POOR [1] RECOVERY [1] ONE SIDE CHANNEL MODIFICATIONS IMPOUNDED [-1] COMMENTS: IMPOUNDED [-1] MODERATE [2] ONE SIDE CHANNEL MODIFICATIONS	Channel Max 20
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank) VERY WIDE > 100m [5] - FOREST, SWAMP [3] - CONSERVATION TILLAGE [1] - NONE / UITLE [3] - WIDE > 50m [4] - SHRUB OR OLD FIELD [2] - URBAN OR INDUSTRIAL [0] - MODERATE [2] - MODERATE 10 - 50m [3] - RESIDENTIAL, PARK, NEW FIELD [1] - OPEN PASTURE, ROWCROP [0] - HEAVY / SEVERE [1] - NARROW 5 - 10m [2] - FENCED PASTURE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] - VERY NARROW < 5 m [1]	Riparian
5.) POOL/GLIDE AND RIFFLE / RUN QUALITY MAX. DPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) [Check 1 Or 2 & AVERAGE] (Check All That Apply) (Check All That Apply) [] - 1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1] [] - 0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1] [] - 0.4t to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0]	Pool / Current Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] -Best Areas > 10cm [1] - MAX < 50 cm [1]	Riffle / Run Max 8 Gradient
6.) GRADIENT (ft / mi): 20.09 DRAINAGE AREA (sq.mi.): 8.55 % POOL: % GLIDE: Gradient Score from Table 2 of Users Manual based on gradient and drainage area.	<u>\</u> О Мах 10


diameter logs that are stable, well developed rootwads in deep / fast water, or deep, well-defined, functional pools. quality; 3 = cover type of highest quality in moderate of greater amounts. Examples of highest quality include, very large boulders in deep or fast water, large small amounts or if more common of marginal quality; 2 = cover type present in moderate amounts, but not of highest quality or in small amounts of highest Instructions for scoring the alternate cover metric: Each cover type should receive a score of between 0 and 3, where: 0 = Cover type absent; 1 = cover type in very Stream Drawing: Lat / Long (Mid): Lat / Long (Beg): Is Sampling Reach Representative of the Stream? (Y/ N) Lat / Long (End): -Low _at / Long (X-Loc) Lake Cook Rel Rating (1-10) Subjective U · D -Moderate Gradient: 1001 Aesthetic -High Rating (1-10) 5 T'ots First Sampling Pass 50000 0008% 10008 Gear \mathcal{O} 5/2 Is there water close downstream? How far: Is Dry Channel mostly natural? Is there water upstream? How far: Is Stream Ephemeral (no pools, totally dry of only damp spots)? 150 Distance: If Not, Explain: Water Clarity: Cluer Norma Water Stage: 223 Canopy- % open: 3 Impacts (Check All That Apply): Other: 2 Major Suspected Sources of Other Flow Alteration None Industrial Agriculture Agriculture Livestock Sliviculture Construction Construction Construction Mining Channelization Agricultural Priparian Removal Landfills Landfills Natural Dams

	6
River Code: 95-703 RM: 14.0 Stream: Millerererere Buffalo Creek	
Site Code: Image: Ima	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY □ -BLDR/SLBS [10]	Substrate
2) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or check 2 and AVERAGE) (Structure) TYPE: Score All That Occur check 2 and AVERAGE) UNDERCUT BANKS [1] 0 POOLS > 70 cm [2] 0 OVERHANGING VEGETATION [1] 1 ROOTWADS [1] 0 AQUATIC MACROPHYTES [1] -EXTENSIVE > 75% [7] 3 SHALLOWS (IN SLOW WATER) [1] 1 BOULDERS [1] 1 -MODERATE 25 - 75% [7] 1 COMMENTS: ROOTMATS [1] 1 -NEARLY ABSENT < 5% [1]	Cover
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS / OTHER HIGH [4] EXCELLENT [7] -NONE [6] HIGH [3] SNAGGING -IMPOUNDMENT MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2] RELOCATION ISLAND LOW [2] FAIR [3] RECOVERING [3] LOW [1] CANOPY REMOVAL LEVEED NONE [1] POOR [1] RECOVERY [1] ONE SIDE CHANNEL MODIFICATIONS IMPOUNDED [-1] IMPOUNDED [-1] IMPOUNDED [-1] ONE SIDE CHANNEL MODIFICATIONS	Channel
COMMENTS:	Riparian 6 Max 10
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY (Check 1 or 2 & AVERAGE) (Check A1 or 2 & AVERAGE) (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply) - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]	Pool / Current Max 12
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS ⁻ *Best Areas > 10cm [2] ⁻ MAX > 50 cm [2] ⁻ STABLE (e.g., Cobble, Boulder) [2] ⁻ NONE [2] ⁻ Best Areas > 10cm [1] ⁻ MAX < 50 cm [1]	Riffle / Run A Max 8 Gradient
6.) GRADIENT (ft / mi): 38.18 DRAINAGE AREA (sq.mi.): 1.37 % POOL: % GLIDE:	\$
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN: based on gradient and drainage area.	Max 10


.

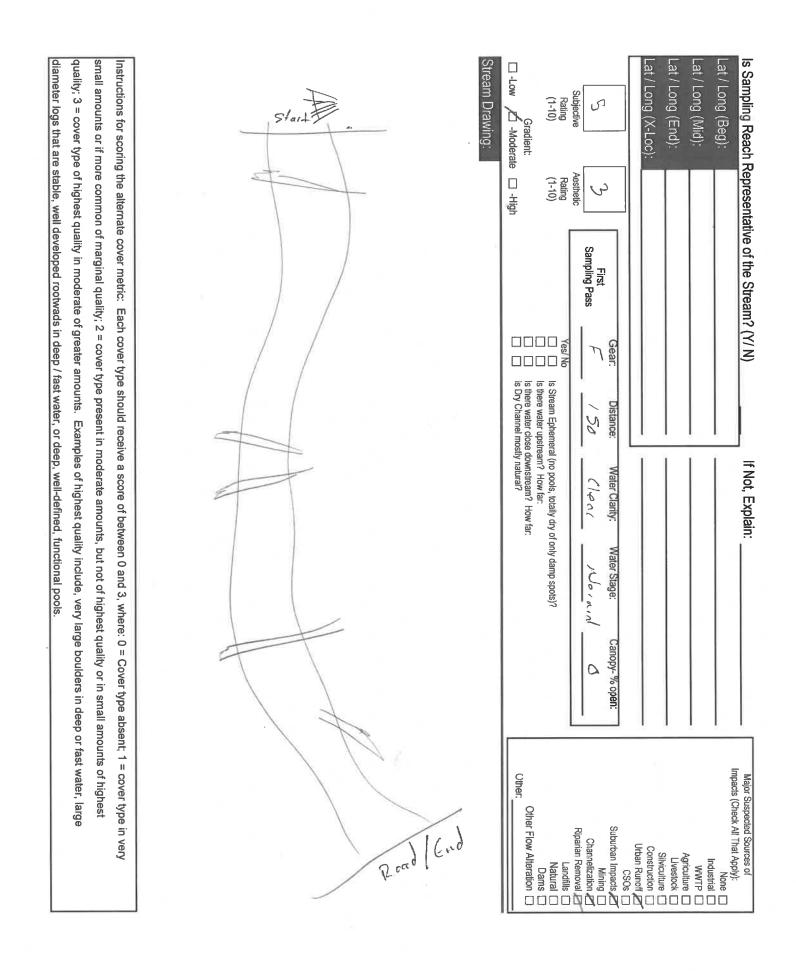
Bit Code 2/5 7/2/7 Page Code 5/5 Search A _ 1 = k + k + k + k + k + k + k + k + k + k	Qualitative Habitat Evaluation Index Field Sheet	QHEI Score: 48
Set Code: []]		
Date 2::2:3:-1:% Events M A:S Latitude Yes Applied ->7::2:3:1:1 Longbook ->7::2:3:1:1 DISENSTIEL: CONVEX (No. W/m Social to the DODE Statistic % proved) POOL REFLE Statistic % proved POOL		
DEE POOL REFLE SUBSTAIL SUBSTAI		
DEE POOL REFLE SUBSTAIL SUBSTAI	4	
Concernses (in) Conserverses		
Content () C		-)
•••••••••••••••••••••••••		-
• OCORRELER; • OCORRELER; • OCORRELER; • OCORRECORRECT: • OCORECORRECT: • OC		· · · · ·
		9
INVERTOR Image: Second State Try: Image: Second State Try		Max 2
Image: Note: Substrate: Press: Image: An Advance () Image: Advance () Image: Advance ()		Indux 2
UNDERCO SUBSTRATE TYPES: -1 or Marci (0)		
Instruction		
COMMENTS: 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) we each cover type a score of 1b 5, see back for instructions) 2.LINSTREAM COVER (6) We cover the score type a score of 1b 5, see back for instructions) 3.LINSTREAM COVER (7) We cover the score type a score of 1b 5, see back for instructions) 3.LINSTREAM COVER (7) We cover the score type a score of 1b 5, see back for instructions) 3.LINSTREAM COVER (7) We cover the score type a score of 1b 5, see back for instructions) 3.LINSTREAM COVER (7) We cover the score type a score of 1b 5, see back for instructions) 3.LINSTREAM COVER (7) We cover the score type a score of 1b 5, see back for instructions (7) We cover the score type a score of 1b 5, see back for instructions (7) We cover the score type a score of 1b 5, see back for instructions (7) We cover the score type a score of 1b 5, see back for instructions (7) We cover the score type a score (7) We cover the score type a score of 1b 5, see back for instructions (7) We cover the score type a score (7) Wo cover the score type a score (7) Wo cover the score (7)		
21.115TERALCOCCE (Gen each cover type a score of to 5, the back for induction) AuXUME: Check OVIY one of one of the cover induction of the cover induced and AVERAGE (F) Over the cover induced and AVERAGE (F) Multicle Cover induced and AVERAGE		
Structurel UNDERCUT BANKS [1] TYPE: Score All The Occur Processor An Itel Recover Profile Recover Prof		
Outlock Product Product <t< td=""><td></td><td></td></t<>		
UDERNAMING VEGENTION (1) PROVINDED (1) <		
3 BANLLONG (IN SLOW WATER) (I)		14
S1. CHANNEL MOBERFOLGOY: (Check ONLY one PER Category OR check 2 and AVERAGE) MODERATE (3) MODERATE (3) MODERATE (3) -INPOUNDMENT Channel S1. MODERATE (3) ROCULENT (1) NONE (0) INPOUNDMENT INPOUNDMENT INPOUNDMENT		
SNUGSTY DEVELOPMENT CHANNELIZATION STABILITY MODERATION/CONSTOCIONS/OTHER Impounded in the intervention of the interventent of the intervent	COMMENTS:	
ANODERATE [3] -0000 [5] -RECOVERED [4] -MODERATE [2] RELOCATION -ISLAND ANODERATE [3] -RECOVERED [4] -MODERATE [2] RECOVERTOR IN -ISLAND ANODERATE [3] -RECOVERT [1] -RECOVERT [1] -RECOVERT [1] -RECOVERT [1] -RECOVERT [1] COMMENTS:		
1-OW [2] -FAR [3] RECOVERING [3] 1-OW [1] CANOPY REMOVAL LEVEEDE NONE [1] RECONT RO NO RECOVERY [1] DORE SIDE CHANNEL MODIFICATIONS DORE SIDE CHANNEL MODIFICATIONS		DMENT Channe
WONE [1] POOR [1] PECENT OR NO RECOVERY [1] POOR [1] PECENT OR NO RECOVERY [1] POOR [1] POOR [1] POOR [2] POOR [2] POOR [2] POOR [2] POOR [2] POOR [2] POOR [2] POOR [2] POOR [2		
RECOVERY [1] ONE SIDE CHANNEL MÖDIFICATIONS COMMENTS:		
COMMENTS: 4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)		
4.1. RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)		
RIPARIAN WIDTH ELOOD PLAIN QUALITY (PAST 100 Mater RIPARIAN) BANK EROSION L R (Ver Bank) L R (Most Predominant Per Bank) L R (Per Bank) L R (Per Bank) Riparlan	COMMENTS:	
RIPARIAN WIDTH ELOOD PLAIN QUALITY (PAST 100 Mater RIPARIAN) BANK EROSION L R (Ver Bank) L R (Most Predominant Per Bank) L R (Per Bank) L R (Per Bank) Riparlan	4 RIPARIAN ZONE AND BANK FROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
L R. (Per Bank) L R. (Most Predominent Per Bank) L R. R. (Per Bank) Ripertain Convertex VERY WIDE > 100m [5] OREST, SWAMP [3] -		
□ -WIDE > 50m [4] □ -SHRUB OR OLD FIELD [2] □ -URBAN OR INDUSTRIAL [0] □ -MODERATE [10 - 50m [3] □ -RESIDENTIAL, PARK, NEW FIELD [1] □ -OPEN PASTURE, ROWCROP [0] □ -HEAVY / SEVERE [1] □ -MARROW 5 - 10m [2] □ -FENCED PASTURE [1] □ -MINING / CONSTRUCTION [0] □ -HEAVY / SEVERE [1] Max 10 □ -MARROW 5 - 10m [2] □ -FENCED PASTURE [1] □ -MINING / CONSTRUCTION [0] □ -HEAVY / SEVERE [1] Max 10 □ -MARROW 5 - 10m [2] □ -FENCED PASTURE [1] □ -MINING / CONSTRUCTION [0] □ -HEAVY / SEVERE [1] Max 10 □ -MODERATE [1] □ -MINING / CONSTRUCTION [0] □ -HEAVY / SEVERE [1] Max 10 □ -MONE [0] COMMENTS:		Riparia
→MODERATE 10 - 50m [3] →RESIDENTIAL, PARK, NEW FIELD [1] →OPEN PASTURE, ROWCROP [0] →HEAVY / SEVERE [1] →NONE [0] →FENCED PASTURE [1] →MINING / CONSTRUCTION [0] →HEAVY / SEVERE [1] Max 10 →NONE [0] →FENCED PASTURE [1] →MINING / CONSTRUCTION [0] →HEAVY / SEVERE [1] Max 10 →NONE [0] →OONE [0] ⊂OMMENTS: →NONE [0] COMMENTS: CURRENT VELOCITY POOL / GLIDE AND RIFFLE / RUN OWALITY MAX DEPTH MORPHOLOGY CURRENT VELOCITY POOLS & RIFFLESI) Current C.1m(6) –POOL WIDTH > RIFFLE WIDTH [2] –TORRENTIAL [-1] Current Current -0.7m [4] –POOL WIDTH > RIFFLE WIDTH [2] –HEAVY / SEVERE [1] Current -0.7m [4] –POOL WIDTH > RIFFLE WIDTH [2] HITE / INTERMI		[3]
☐ ANARROW 5-10m [2]		·
- VERY NARROW < 5m [1]		RE [1] Max 10
S.1 POOL/GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY Check ION YII (Check for 2 & AVERAGE) - 1m (8) - POOL WIDTH > RIFFLE WIDTH [2] - 1m (8) - POOL WIDTH > RIFFLE WIDTH [2] - 0.7m (4) - POOL WIDTH > RIFFLE WIDTH [2] - 0.7m (4) - POOL WIDTH > RIFFLE WIDTH [2] - 0.7m (4) - POOL WIDTH > RIFFLE WIDTH [2] - 0.7m (4) - POOL WIDTH > RIFFLE WIDTH [2] - 0.7m (4) - POOL WIDTH > RIFFLE WIDTH [2] - 0.7m (4) - POOL WIDTH > RIFFLE WIDTH [2] - 0.2 to 0.4m (1) - HODE RATE [1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]		
5.) POOL / GLDE AND RIFFLE / RUN QUALITY MAX_DEPTH MORPHOLOGY CLRRENT VELOCITY (POOLS & RIFFLES!) (Check 1 or 2 & AVERAGE) (Check All That Apply) - 0.7m [4] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH > RIFFLE WIDTH [1] - FAST [1] - UTRRENTIAL [-1] Current - 0.7m [4] - POOL WIDTH > RIFFLE WIDTH [0] - MODERATE [1] - INTERMITTENT [-2] W - 0.2 to 0.4m [1] - HOPOUNDED [-1] - SLOW [1] - VERY FAST [1] Max 12 COMMENTS:		
MAX_DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI) (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] Current - 0.7m [4] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - INTERSTITIAL [-1] Urent - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [0] - HAST [1] - INTERSTITIAL [-1] Urent - 0.4 to 0.7m [2] - POOL WIDTH = RIFFLE WIDTH [0] - MODERATE [1] - INTERMITTENT [-2] Urent - 0.4 to 0.7m [2] - POOL WIDTH = RIFFLE WIDTH [0] - MODERATE [1] - INTERMITTENT [-2] Urent - 0.2 to 0.4m [1] - IMPOUNDED [-1] - SLOW [1] - VERY FAST [1] Max 12 - 0.2 to 0.4m [1] - IMPOUNDED [-1] - SLOW [1] - VERY FAST [1] Max 12 COMMENTS: -		
ICheck 1 ONLYII (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool / Im [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1] Current Im [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -INTERSTITIAL [-1] Current Im [6] -POOL WIDTH > RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1] Image: Current Image: Image	5.) POOL/GLIDE AND RIFFLE / RUN QUALITY	
- 1m (6) - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]		
¹ - 0.7m [4] ¹ - POOL WIDTH = RIFFLE WIDTH [1] ¹ - FAST [1] ¹ - INTERSTITIAL [-1] ¹ - 0.4 to 0.7m [2] ¹ - POOL WIDTH < RIFFLE WIDTH [0]		
□ -0.4 to 0.7m [2] □ -POOL WIDTH < RIFFLE WIDTH [0]		Curren
- 0.2 to 0.4 m [1] - IMPOUNDED [-1] - Max Here with the with the field - 0.2 to 0.4 m [1] - IMPOUNDED [-1] - SLOW [1] - VERY FAST [1] - 0.2 to 0.4 m [1] - IMPOUNDED [-1] - SLOW [1] - VERY FAST [1] - 0.2 to 0.4 m [1] - IMPOUNDED [-1] - SLOW [1] - VERY FAST [1] COMMENTS: - NONE [-1] - NONE [-1] Max 12 CHECK ONE OR CHECK 2 AND ADVERAGE Riffle / Ru Riffle / Ru Riffle / Ru RUN DEPTH Riffle / Ru Substrate Riffle / Ru - *Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] O - Best Areas > 10cm [1] - MAX < 50 cm [1]		10
 -<0.2m [POOL = 0] -NONE [-1] -NONE [-1] COMMENTS: 		Ľ
COMMENTS: Riffle / Run CHECK ONE OR CHECK 2 AND ADVERAGE Riffle / Run Riffle / Run DEPTH OFFLE / RUN SUBSTRATE OFFLE / RUN EMBEDDEDNESS OFFLE / NO RUN [1] OFFLE / NO RUN [Metric = 0] OFFLE / NO RUN [Metric = 0] COMMENTS: OFFLE / NO RUN [Metric = 0] COMMENTS: OFFLE / NO RUN [Metric = 0] COMMENTS: OFFLE / NO RUN [Metric = 0] OFFLE / NO RUN [Metric = 0]		widX 12
CHECK ONE OR CHECK 2 AND ADVERAGE Riffle Jepth RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS O -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] -NONE [2] O		
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS O -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] -NONE [2] -NONE [2] -NONE [2] Max 8 -Best Areas > 10cm [1] - MAX < 50 cm [1]		
-*Best Areas > 10cm [2] -MAX > 50 cm [2] -STABLE (e.g., Cobble, Boulder) [2] -NONE [2]		Riffle / R
-Best Areas 5 - 10cm [1] - MAX < 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] -LOW [1] Max 8 -Best Areas < 5cm [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE / NO RUN [Metric = 0] COMMENTS: 6.) GRADIENT (ft / mi): 10.37 DRAINAGE AREA (sq.mi.): 5.5 % POOL: % GLIDE: % GL		~ n
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE / NO RUN [Metric = 0] -NO RIFFLE / NO RUN [Metric = 0] -OMMENTS: -Comments: -Comm		May 0
-NO RIFFLE but RUNS present [0] -EXTENSIVE [-1] Gradient -EXTENSIVE [-1] Gradient		Widž O
Image: Comments:		Gradier
6.) GRADIENT (ft / mi): 10.37 DRAINAGE AREA (sq.mi.): 5.5 % POOL: % GLIDE: Gradient Score from Table 2 of Users Manual		_
Gradient Score from Table 2 of Users Manual		/r
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN: based on gradient and drainage area. Max 10		
	*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN: besed on gradient score	ent and dreinage area. Max 10



Qualitative Habitat Evaluation Index Field Sheet	El Score:	45
River Code: 95-701 RM: 0.8 Stream: Artakisic Creek		
Ste Code: 18-2 Project Code: DRWWIF Location: U4 Pelara Dr		
Date: 8-23-17 Scorer: MAS Latitude: 42.16473. Longitude: -87,92782		•
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent		
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY □ -BLDR/SLBS [10] □ -GRAVEL [7] ✓ Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE) <td></td> <td>Substrate</td>		Substrate
-BOULDER [9]]	4.5
	ĺ	
-HARDPAN [4] -ARTIFICIAL [0]		Max 20
□ □ -MUCK [2] □ -SILT [2] □ -SANDSTONE [0] EMBEDDED [2] -EXTENSIVE [-2] □ -RIP / RAP [0] NESS: □ -MODERATE [-1]		
NUMBER OF SUBSTRATE TYPES: 4 or More [2] -LACUSTRINE [0] -NORMAL [0]		
(High Quality Only, Score 5 or >) ✓ -3 or Less [0] □ -SHALE [-1] □ -NONE [1] □ -COAL FINES [-2]		
COMMENTS:		
2) INSTREAM COVER (Structure) (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or check 2 and AVERAGE) (Structure) TYPE: Score All That Occur check 2 and AVERAGE) (UNDERCUT BANKS [1] POOLS > 70 cm [2] OXBOWS, BACKWATERS [1] -EXTENSIVE > 75% [11] (Structure) ROOTWADS [1] OXBOWS, BACKWATERS [1] -EXTENSIVE > 75% [11] 3 SHALLOWS (IN SLOW WATER) [1] BOULDERS [1] SHOULDERS [1] -SPARSE 5 - 25% [3] (COMMENTS: COMMENTS: -NEARLY ABSENT < 5% [1]		Cover 5 Max 20
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)		
Sinuosity Development Channelization Stability Modifications / other High [4] Excellent [7] -NONE [6] High [3] SNAGGING IMPOUNDMENT Moderate [3] GOOD [5] Recovered [4] Moderate [2] -Zrrelocation ISLAND Low [2] Fair [3] Recovered [4] Moderate [2] Zrrelocation ISLAND None [1] Recovered [4] Low [1] Recovered [4] Low [1] Leved None [1] Recover on No Recover on No Dredging Bank shaping Recover [1] -Recover [1] One side channel modifications Dredging Bank shaping		Channel S Max 20
-IMPOUNDED [-1]		
COMMENTS:		
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank) VERY WIDE > 100m [5] FOREST, SWAMP [3] -CONSERVATION TILLAGE [1] -NONE / LITTLE [3] WIDE > 50m [4] -SHRUB OR OLD FIELD [2] -URBAN OR INDUSTRIAL [0] -MODERATE [2] - MODERATE 10 - 50m [3] Z -RESIDENTIAL, PARK, NEW FIELD [1] -OPEN PASTURE, ROWCROP [0]. -HEAVY / SEVERE [1] - NONE For the state [1] FENCED PASTURE [1] MINING / CONSTRUCTION [0] -HEAVY / SEVERE [1] - NONE [0] COMMENTS: FENCED PASTURE [1] MINING / CONSTRUCTION [0] HEAVY / SEVERE [1]		Riparian <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
5.) POOL/GLIDE AND RIFFLE / RUN QUALITY		
MAX_DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLY!) (Check 1 or 2 & AVERAGE) (Check All That Apply) - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]	[Pool / Current Q Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE		Riffle / Run
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS *Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] Best Areas > 10cm [1] - MAX > 50 cm [1] - MOX STABLE (e.g., Cobble, Boulder) [2] - NONE [2] Best Areas > 10cm [1] - MAX < 50 cm [1]		Max 8 Gradient
COMMENTS:	ſ	
6.) GRADIENT (ft / mi): /0.7 DRAINAGE AREA (sq.mi.): 4.94 % POOL: % GLIDE: Gradied Score from Table		S
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN: bested on greatient and dru	inage area.	Max 10

WWTP

Midwest Biodiversity Qualitative Habitat Evaluation Index Field Sheet QHEI Score	65.5
iver Code: 95-701 RM: 4.30 Stream: Aptakisic Creek	
ite Code: 18-3 Project Code: DRWWI7 Location: Det Copperwood Dr.	-
ate: 8-24-17 Scorer: 1712 Latitude: 42.17704 Longitude: -87.95918	-
SUBSTRATE Check ONLY Two Substrate TYPE BOXES; Estimate % percent YPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	Substrate
	Max 20
□	
UMBER OF SUBSTRATE TYPES: -4 or More [2] -LACUSTRINE [0] -NORMAL [0] tigh Quality Only, Score 5 or >) -3 or Less [0] -SHALE [-1] -NONE [1] OMMENTS: -COAL FINES [-2]	
1)INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or check 2 and AVERAGE) (Structure) TYPE: Score All That Occur check 2 and AVERAGE) UNDERCUT BANKS [1] POOLS > 70 cm [2] O OXBOWS, BACKWATERS [1] -EXTENSIVE > 75% [11] 1 OVERHANGING VEGETATION [1] (ROOTWADS [1] 2 AQUATIC MACROPHYTES [1] -MODERATE 25 - 75% [7] 3 SHALLOWS (IN SLOW WATER) [1] / BOULDERS [1] / LOGS OR WOODY DEBRIS [1] -SPARSE 5 - 25% [3] (Cover
MODERATE [3] CHANNEL MORPHOLOGY: (check ONLY one PER Category OR check 2 and AVERAGE) SINUOSITY DEVELOPMENT CHANNELIZATION STABILTIY MODIFICATIONS / OTHER HIGH [4] EXCELLENT [7] NONE [6] HIGH [3] SNAGGING IMPOUNDMENT MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2] RELOCATION -ISLAND	Channel
OMMENTS:	-
NIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) Image: River Right Looking Downstream IPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION . R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian Max 10
POOL / GLIDE AND RIFFLE / RUN QUALITY	
MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI) hack 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply) - 1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1] - 0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1] - 0.7m [4] -POOL WIDTH = RIFFLE WIDTH [0] -AMODERATE [1] -INTERMITTENT [-2] - 0.4 to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0]	Pool / Current Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE FFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS - *Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - Best Areas 5 - 10cm [1] - MAX > 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] - LOW [1] - Best Areas < 5cm [0]	Riffle / Run Max 8 Gradient
DMMENTS:	5
gRADIENT (ft / mi): /8./4 DRAINAGE AREA (sq.mi.): 2.3 % POOL: % GLIDE: Gradient Score from Table 2 of Users Manual est areas must be large enough to support a population of riffic-obligate species % RIFFLE: % RUN: Based on gradient and drainage area.	Max 10



IVI II Biodiversity	Qualitative	Habita	at Evaluation Index	Field She	et o	QHEI Score:	174
River Code: 95-70/	RM: 4.7	Stream:	Aptatisic Cr.	PPt			
Site Code: G-(D) 18-4	Project Code: DRWW(7	Location:					
0 1 1 1 1 1	Scorer: MAS	Latitude:	42.18116	Longitude:	- 87.94680		
Date: 8-24-17	Scorer: /* PKS		121101112	Longhuou:	07.746.80		
1.) SUBSTRATE (Check ONLY Two	Substrate TYPE BOXES; Estimate % per	rcent					
TYPE POOL	RIFFLE	POOL	RIFFLE SUBSTRATE ORIGIN		SUBSTRATE QUALITY		
 	GRAVEL [7]	×	Check ONE (OR 2 & AVE		Check ONE (OR 2 & AVERAGE)		
						14. j	
L] -Lg BOULD [10]	🖾 -SAND [6]	<u> </u>	-LIMESTONE [1]	SILT:	-SILT HEAVY [-2]		Substrate
-BOULDER [9]	🗔 🗔 -BEDROCK [5]		TILLS [1]		SILT MODERATE [-1]		
COBBLE [8]	DETRITUS [3]	X	-WETLANDS [0]		-SILT NORMAL [0]		8
			-HARDPAN [0]	· · · · · · · · · · · · · · · · · · ·	-SILT FREE [1]	l	Max 20
				CHDEDDED	• • • • • • • • • • • • • • • • • • •		INDA 20
	C 🗆 -SILT [2]	<u> </u>	SANDSTONE [0]		-EXTENSIVE [-2]		
				NESS:	-MODERATE [-1]		
NUMBER OF SUBSTRATE TYPES:	-4 or More [2]		-LACUSTRINE [0]		-NORMAL [0]		
(High Quality Only, Score 5 or >)	🗹 -3 or Less [0]		-SHALE [-1]	(-NONE [1]		
()			-COAL FINES [-2]				
COMMENTS:							
	over type a score of 0 to 3; see back for i	instructions)			AMOUNT: (Check ONLY one	or	
(Structure)	TYPE: Score All That Occur				check 2 and AVERAGE)		Cover
	^	0				ſ	
UNDERCUT BANKS [1]			OXBOWS, BACKWATERS [1]		-EXTENSIVE > 75% [11]		3
		And the second second	AQUATIC MACROPHYTES [1]		-MODERATE 25 - 75% [7]	l	
SHALLOWS (IN SLOW WATE	ER) [1] OBOULDERS [1]	_/	LOGS OR WOODY DEBRIS [1]	c	-SPARSE 5 - 25% [3]		Max 20
ROOTMATS [1]					-NEARLY ABSENT < 5% [1]		
COMMENTS:							
3.) CHANNEL MORPHOLOGY: (Che	eck ONLY one PER Category OR check	2 and AVER/	AGE)				
SINUOSITY DE	VELOPMENT CHANNELIZA	TION	STABILTIY	MODIFICATIO	INS / OTHER		
	-EXCELLENT [7] -NONE [1.	🗹 -нідн [3]	-SNAGG		ENT	Channel
	-GOOD [5] -RECOV	-	-MODERATE [2]	Z-RELOC/			dilaminor
	-FAIR [3]		-LOW [1]	Z-CANOP	· · ·		81
				. /			
* Z -NONE [1] Z	-POOR [1] -RECEN			DREDG		ING	Max 20
Ę	RECOVE			-ONE SI	DE CHANNEL MODIFICATIONS		
		NDED [-1]					
COMMENTS:							
				P-4	R		
4.) RIPARIAN ZONE AND BANK ERO	OSION (check ONE box PER bank or ch	eck 2 and A	/ERAGE per bank)	River Rig	ht Looking Downstream		
				ų -	BANK EROSION		
RIPARIAN WIDTH	FLOOD PLAIN QUA		100 Meter RIPARIAN)				
RIPARIAN WIDTH			100 Meter RIPARIAN)		L R (Per Bank)		Rinarian
L R (Per Bank)	L R (Most Predominant Per Bank		LR	CE M1	L R (Per Bank)	ſ	Riparian
L R (Per Bank)	L R (Most Predominant Per Bank					ſ	Riparian
L R (Per Bank) 	L R (Most Predominant Per Bank		L R	L [0]	-NONE / LITTLE [3]		K
L R (Per Bank)	L R (Most Predominant Per Bank			L [0]		[1]	Riparian Max 10
L R (Per Bank) 	L R (Most Predominant Per Bank		L R	IL [0] CROP [0]	-NONE / LITTLE [3]	[1]	K
L R (Per Bank) 	L R (Most Predominant Per Bank		L R	IL [0] CROP [0]	-NONE / LITTLE [3]	[1]	K
L R (Per Bank) 	L R (Most Predominant Per Bank		L R	IL [0] CROP [0]	-NONE / LITTLE [3]	[1]	K
L R (Per Bank) 	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW - FENCED PASTURE [1]		L R	IL [0] CROP [0]	-NONE / LITTLE [3]	[1]	K
L R (Per Bank) 	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS:		L R	IL [0] CROP [0]	-NONE / LITTLE [3]	[1]	K
L R (Per Bank)	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS:		L R	IL [0] CROP [0] ION [0]	One / Little [3] One / Little [3] One / Little [3] One / Moderate [2] One / Heavy / Severe One / Heavy / Severe	[1]	K
L R (Per Bank) 	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: NQUALITY MORPHOLOGY) / FIELD [1]	L R	IL [0] CROP [0] ION [0] ITY (POOLS & R	One / Little [3] One / Little [3] One / Little [3] One / Moderate [2] One / Heavy / Severe One / Heavy / Severe	[1]	Kax 10
L R (Per Bank)	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: N QUALITY (Check 1 or 2 & AVERAGE)) / FIELD [1]	L R -CONSERVATION TILLA -URBAN OR INDUSTRIA -OPEN PASTURE, ROW -MINING / CONSTRUCT CURRENT VELOCI (Check	L [0] CROP [0] LON [0] ITY (POOLS & R All That Apply)	IFFLESI)	[1]	Max 10 Pool /
L R (Per Bank)	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: NQUALITY (Check 1 or 2 & AVERAGE) - POOL WIDTH > RIFFLE WI) / FIELD [1]) DTH [2]	L R -CONSERVATION TILLA -URBAN OR INDUSTRIA -OPEN PASTURE, ROW -OPEN PASTURE, ROW -MINING / CONSTRUCT CURRENT VELOCI (CheckEDDIES [1]	L [0] CROP [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0]	IFFLESI)	[1]	Kax 10
L R (Per Bank)	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: N QUALITY (Check 1 or 2 & AVERAGE)) / FIELD [1]) DTH [2]	L R -CONSERVATION TILLA -URBAN OR INDUSTRIA -OPEN PASTURE, ROW -MINING / CONSTRUCT CURRENT VELOCI (Check	L [0] CROP [0] LON [0] ITY (POOLS & R All That Apply)	IFFLESI)	[1]	Max 10 Pool /
L R (Per Bank)	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: NQUALITY (Check 1 or 2 & AVERAGE) - POOL WIDTH > RIFFLE WI) / FIELD [1]) DTH [2] DTH [1]	L R -CONSERVATION TILLA -URBAN OR INDUSTRIA -OPEN PASTURE, ROW -OPEN PASTURE, ROW -MINING / CONSTRUCT CURRENT VELOCI (CheckEDDIES [1]	L [0] CROP [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0] LON [0]	IFFLESI)	[1]	Max 10 Pool /
L R (Per Bank) 	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: NQUALITY (Check 1 or 2 & AVERAGE) - POOL WIDTH > RIFFLE WI - POOL WIDTH = RIFFLE WI - POOL WIDTH < RIFFLE WI) / FIELD [1]) DTH [2] DTH [1]	L R CONSERVATION TILLA	ITY (POOLS & R All That Apply) -TORREF -INTERS -INTERM	IFFLESI)	[1]	Max 10 Pool /
L R (Per Bank) VERY WIDE > 100m [5] WIDE > 50m [4] MODERATE 10 - 50m [3] NARROW 5 - 10m [2] NARROW 5 - 10m [2] NONE [0] 5.) POOL / GLIDE AND RIFFLE / RUI MAX. DEPTH (Check 1 ONLYI) 1m [6] 0.7m [4] 0.2 to 0.4m [1]	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: NQUALITY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI) / FIELD [1]) DTH [2] DTH [1]	L R	IL [0] CROP [0] ON [0] ITY (POOLS & R All That Apply) C -TORREF U -INTERS	IFFLESI)	[1]	Max 10' Pool / Current
L R (Per Bank) VERY WIDE > 100m [5] WIDE > 50m [4] MODERATE 10 - 50m [3] NARROW 5 - 10m [2] NARROW 5 - 10m [2] NONE [0] 5.) POOL / GLIDE AND RIFFLE / RUP MAX, DEPTH (Check 1 ONLY]) 1m [6] 0.7m [4] 0.2 to 0.4m [1] < 0.2m [POOL = 0)	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: NQUALITY (Check 1 or 2 & AVERAGE) - POOL WIDTH > RIFFLE WI - POOL WIDTH = RIFFLE WI - POOL WIDTH < RIFFLE WI) / FIELD [1]) DTH [2] DTH [1]	L R CONSERVATION TILLA	ITY (POOLS & R All That Apply) -TORREF -INTERS -INTERM	IFFLESI)	[1]	Max 10' Pool / Current
L R (Per Bank) 	L R (Most Predominant Per Bank FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] - RESIDENTIAL, PARK, NEW FENCED PASTURE [1] COMMENTS: NQUALITY (Check 1 or 2 & AVERAGE) - POOL WIDTH > RIFFLE WI - POOL WIDTH = RIFFLE WI - POOL WIDTH < RIFFLE WI) / FIELD [1]) DTH [2] DTH [1]	L R	ITY (POOLS & R All That Apply) -TORREF -INTERS -INTERM	IFFLESI)	[1]	Max 10' Pool / Current
L R (Per Bank) 	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0]	L R	ITY (POOLS & R All That Apply) -TORREF -INTERS -INTERM	IFFLESI)	[Pool / Current
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] R CHECK 2	L R	ITY (POOLS & R All That Apply) - TORREF - INTERS - INTERM - VERY F	IFFLESI) NTIAL [-1] ITTENT [-2] AST [1]	[Max 10' Pool / Current
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] <u>R CHECK 2</u> <u>RIFFLE / 1</u>	L R	ITY (POOLS & R All That Apply) - TORREF - INTERS - INTERM - VERY F		[Pool / Current Max 12
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] <u>R CHECK 2</u> <u>RIFFLE / 1</u>	L R	ITY (POOLS & R All That Apply) - TORREF - INTERS - INTERM - VERY F		[Pool / Current
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] 	L R	ITY (POOLS & R All That Apply) - TORREF - INTERS - INTERM - VERY F		[Pool / Current Max 12
L R (Per Bank) 	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] PR CHECK 2 <u>RIFFLE /1</u> } -STABLE (1) -STABLE (1) -STABLE (1)	L R CONSERVATION TILLA UBCONSERVATION TILLA UBCONSTRICT CURBAN OR INDUSTRIA UBCONSTRUCT: CURRENT VELOCI (Check. UBCONSTRUCT: CONSTRUCT: C	ITY (POOLS & R All That Apply) - TORRET - INTERS - INTERM - VERY F/ RIFFLE / RUN - NONE [2		[Pool / Current Max 12
L R (Per Bank) 	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] PR CHECK 2 <u>RIFFLE /1</u> } -STABLE (1) -STABLE (1) -STABLE (1)	L R CONSERVATION TILLA UBCONSERVATION TILLA UBCONSTRICT CURBAN OR INDUSTRIA UBCONSTRUCT CURRENT VELOCI (Check. UBCONSTRUCT) CHARTE [1] UBCONSTRUCT] AND ADVERAGE RUN SUBSTRATE e.g., Cobble, Boulder) [2] ABLE (e.g., Large Gravel) [1]	L [0] CROP [0] LON [0] LON [0] LITY (POOLS & R All That Apply) - TORREF - INTERS - INTERM - VERY F/ RIFFLE / RUN - NONE [2 - LOW [1] 		R	Pool / Current Max 12 Max 12
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] PR CHECK 2 <u>RIFFLE /1</u> } -STABLE (1) -STABLE (1) -STABLE (1)	L R CONSERVATION TILLA UBCONSERVATION TILLA UBCONSTRICT CURBAN OR INDUSTRIA UBCONSTRUCT CURRENT VELOCI (Check. UBCONSTRUCT) CHARTE [1] UBCONSTRUCT] AND ADVERAGE RUN SUBSTRATE e.g., Cobble, Boulder) [2] ABLE (e.g., Large Gravel) [1]	IL [0] CROP [0] CROP [0] ION [0] ITY (POOLS & R All That Apply) -TORREI -INTERS -INTERM -VERY F/ RIFFLE / RUN -NONE [2 -LOW [1]		R	Pool / Current Max 12
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] PR CHECK 2 <u>RIFFLE /1</u> } -STABLE (1) -STABLE (1) -STABLE (1)	L R CONSERVATION TILLA UBCONSERVATION TILLA UBCONSTRICT CURBAN OR INDUSTRIA UBCONSTRUCT CURRENT VELOCI (Check. UBCONSTRUCT) CHARTE [1] UBCONSTRUCT] AND ADVERAGE RUN SUBSTRATE e.g., Cobble, Boulder) [2] ABLE (e.g., Large Gravel) [1]	L [0] CROP [0] LON [0] LON [0] LITY (POOLS & R All That Apply) - TORREF - INTERS - INTERM - VERY F/ RIFFLE / RUN - LOW [1] - MODER		R	Pool / Current Max 12 Max 12
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] ////////////////////////////////////	L R CONSERVATION TILLA UBCONSERVATION TILLA UBCONSTRICT CURBAN OR INDUSTRIA UBCONSTRUCT CURRENT VELOCI (Check. UBCONSTRUCT) CHARTE [1] UBCONSTRUCT] AND ADVERAGE RUN SUBSTRATE e.g., Cobble, Boulder) [2] ABLE (e.g., Large Gravel) [1]	L [0] CROP [0] LON [0] LON [0] LITY (POOLS & R All That Apply) - TORREF - INTERS - INTERM - VERY F/ RIFFLE / RUN - LOW [1] - MODER		R	Pool / Current X Max 12 Max 12
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] /// CHECK 2 RIFFLE /1) - STABLE (1 - UNSTABL	L R CONSERVATION TILLA UBCONSERVATION TILLA UBCONSTRICT CURBAN OR INDUSTRIA UBCONSTRUCT CURRENT VELOCI (Check. UBCONSTRUCT) CHARTE [1] UBCONSTRUCT] AND ADVERAGE RUN SUBSTRATE e.g., Cobble, Boulder) [2] ABLE (e.g., Large Gravel) [1]	LI [0] CROP [0] LON [0] LON [0] LON [0] LON [0] LITY (POOLS & R All That Apply) LITREN LITRENS LITRENS LITRENS LITRENS LITRENS LITRENS LITRENS		R	Pool / Current Max 12 Max 12
L R (Per Bank)	L R (Most Predominant Per Bank) / FIELD [1]) DTH [2] DTH [1] DTH [0] /// CHECK 2 RIFFLE /1) - STABLE (1 - UNSTABL	L R	LI [0] CROP [0] CROP [0] LON [0] LITY (POOLS & R All That Apply) -TORRE! -INTERS -INTERS -INTERS -INTERM -VERY F/ -VERY F/ -NONE [2 -LOW [1] -MODER -EXTENS DE:		R [] Table 2 of Users Menual	Pool / Current X Max 12 Max 12

Instructions for scoring the alternate cover metric: Each cover type should receive a score of between 0 and 3, where: 0 = Cover type absent; 1 = cover type in very small amounts or if more common of marginal quality: 2 = cover type present in moderate amounts, but not of highest quality or in small amounts of highest	Wolking Rath/Start Sorthugonson 24 mbz Elb bb	Drawing:	Rating Rating Yes/ No (1-10) (1-10) Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Gradient: Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Image: Stream Ephemeral	L L First Gear: Distance: Water Clarity: Water Stage: Canopy-% open: Subjective Aesthetic Sampling Pass F /50 Clubs Moring I 150	Lat / Long (End): Lat / Long (X-Loc):	Lat / Long (Mid):	Is Sampling Reach Representative of the Stream? (Y/ N) If Not, Explain: Major Su Impacts (Comparison (Regi): If A comparison (Reg):
r type in very hest			Landfills	Suburban Impacts	Livestock	Agriculture	Major Suspected Sources of Impacts (Check All That Apply): None

.

M	riod 📲 Siod	west fiversity itute			Qualitativ	e Habil	tat Evalua	tion Index	k Field Sh	eet	QHEI Score:	3.5
River Code:	95-71	2	RM:		0.05	Stream:	Lionan	edTrib	to Act	akisic Creek		
Site Code:	G-11		Project	Code:	DRWW17	Location			Park			-
Date:	8-24-1	Ŧ	Scorer:		MAS	Latitude		the second se	Longitude:	- 87.96581		-
	TE (Oheel: Ohl	V Two C	ulanánnán 7					-				-
				I YPE BO	XES; Estimate %							
TYPE		POOL	RIFFLE		· ·	POOL	RIFFLE SUE	ISTRATE ORIGIN		SUBSTRATE QUALITY		
-BLDF	VSLBS [10]				GRAVEL [7]	<u> </u>	Che	ck ONE (OR 2 & A	VERAGE)	Check ONE (OR 2 & AVERA	GE)	
🗆 🗔 -Lg BC	OULD [10]			ſС	-SAND [6]	X		-LIMESTONE [1]] SILT:	-SILT HEAVY [-2]		Substrate
🗆 🖾 -BOUI	LDER (9)				BEDROCK [5]			-TILLS [1]	-	SILT MODERATE [-1]		
				-	-DETRITUS (3)	X		-WETLANDS [0]	1	SILT NORMAL [0]		0
				-								-
		<u> </u>		-	-ARTIFICIAL [0]			-HARDPAN [0]		-SILT FREE [1]	·	Max 20
	K [2]	\times] -SILT [2]	<u> </u>		-SANDSTONE [) 🔲 -EXTENSIVE [-2]		
								-RIP / RAP [0]	NESS:	MODERATE [-1]		
NUMBER OF S	SUBSTRATE T	YPES:			-4 or More [2].			-LACUSTRINE [0]	-NORMAL [0]		
(High Quality C	Only, Score 5 or	r >)			-3 or Less [0]			-SHALE [-1]		-NONE [1]		
							Г	-COAL FINES [-	21			
COMMENTS:								00/12/11/12012	-1			
	COVER (Give	each cov	ver type a	score of	f 0 to 3; see back f	or instructions))			AMOUNT: (Check ONL	Y one or	
(5	Structure)			TYPE:	Score All That Occ	ur.	, ,			check 2 and AVERAGE		Cover
	RCUT BANKS	[1]		-	POOLS > 70 cm		OXBOWS, BACK	NATERS [1]		-EXTENSIVE > 75% [11		
	HANGING VEO		N [1]		ROOTWADS [1]		AQUATIC MACRO			-MODERATE 25 - 75%	-	121
	LOWS (IN SLO				BOULDERS [1]	- 3	LOGS OR WOOD			-SPARSE 5 - 25% [3]	4	May 20
/ ROOT	-		1411		_200655543[1]		_1003 OK WOOD	I DEBRIS [I]			V F41	Max 20
	INIX IS [1]									-NEARLY ABSENT < 59	0[1]	
COMMENTS:	100000000		LONIN		0.1	1.0 1.41/07						
					Category OR che		-			· · · · · · · · · · · · · · · · · · ·		
SINUC			ELOPME		CHANNEL		STABILTI	-	the second se	IONS / OTHER		
-HIGH			EXCELLE		-NON		🗔 -HIG		SNAG	GING 🗌 -IMPOL	JNDMENT	Channel
-MODI			GOOD [5]		OVERED [4]	P-MO	DERATE [2]	-RELÓO	CATION -ISLAN	D	4.5
Z-LOW			FAIR [3]		-REC	OVERING [3]	🗆 -LO\	V [1]	CANOI	PY REMOVAL 📋 -LEVEE	D	8.7
-NONE	Ξ[1]	_]Z-	POOR [1]	-REC	ENT OR NO			-DRED	GING -BANK	SHAPING	Max 20
/					RECO	VERY [1]			-ONE S	DE CHANNEL MODIFICATION	NS	
					-IMPC	UNDED [-1]						
COMMENTS:												
	ZONE AND BA	NK ERO	SION (ch	eck ONE	E box PER bank or	check 2 and A	AVERAGE per bank)	River R	ight Looking Downstream	4	6
RIPARIAN WID	DTH				FLOOD PLAIN C	UALITY (PAS	T 100 Meter RIPAR	IAN)	-	BANK EROSION		
LR (Per B	ank)		L R	(Most P	redominant Per Ba	ink)	LR	10		L R (Per Bank)		Riparian
U U-VERY	WIDE > 100m	[5]		-FORES	ST, SWAMP [3]		ICO- CO	ISERVATION TIL	LAGE [1]	-NONE / LITTI	E [3]	
-WIDE	> 50m [4]			-SHRUE	OR OLD FIELD	2]		BAN OR INDUSTR	RIAL IO	Z Z -MODERATE	••	n
		m [3]			ENTIAL, PARK, N			EN PASTURE, RO		-HEAVY / SEV		Max 10
	OW 5 - 10m [2				D PASTURE [1]			ING / CONSTRUC				
Z -VERY									1011101			
			COMME	NTS.								
	- [0]		COMME	10.								5
		EZBUN	OLIAL PD	,								
5.) POOL/GL	IDE AND RIFFL	LE / RUN	QUALITY	-	(000)00000							
MAX. DEPTH					MORPHOLOGY				CITY (POOLS &	RIFFLES!)		
(Check 1 ONLY					1 or 2 & AVERA				ck All That Apply)			Pool /
🗆 - 1m (6	•				WIDTH > RIFFLE			-EDDIES [1]				Current
🗆 - 0.7m	[4]		Ø		WIDTH = RIFFLE			-FAST [1]	-INTER	STITIAL [-1]		m
🗌 - 0.4 to	0.7m [2]		`□	-POOL	WIDTH < RIFFLE	WIDTH [0]		-MODERATE [1]	🗔 -INTERI	MITTENT [-2]		
🗹 - 0.2 to	0.4m [1]			-IMPOU	NDED [-1]		Z	-SLOW [1]	🗆 -VERY I	FAST [1]		Max 12
-< 0.2	m [POOL = 0}							-NONE [-1]				
COMMENTS:												
								4	6			
di ili di la mana ana ana penera de	e men ann dhadh bha ann ann par ann, ann ann ann ann ann				CHECK ON	OR CHECK	2 AND ADVERAGE			. An age into the survey process gamping of the last the		Riffle / Run
RIFFLE DEPTH	4		RUN	DEPTH			RUN SUBSTRATE		RIFFLE / RU	N EMBEDDEDNESS		
	÷ Areas > 10cm [21					(e.g., Cobble, Boul		-NONE			O
	Areas 5 - 10cm						ABLE (e.g., Large					Max 9
	vreas < 5cm [0]		\sim		50 0m [1]				-			Max 8
			101				LE (Fine Gravel, Sa	and) [0]				And the st
/	FFLE but RUN	-							-EXIEN	ISIVE [-1]		Gradient
	FFLE / NO RUI	N IMetric :	= 0j									
COMMENTS:			_		^	00						101
6.) GRADIENT	(ft/mi): / <u>9</u> .	34	DRAINAC	GE AREA	(sq.mi.): <u>0.</u>	<u>77</u>	% POOL:	% GL	JDE:			0
*Best areas must b	be large enough to	support a r	nopulation (of riffle-abl	igate species		% RIFFLE:	% F	RUN:	Gradient Sci based on co	ore from Table 2 of Users Manual adient and drainage area.	Max 10
												The second secon

